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Abstract

The goal of this Master’s Thesis is the design and development of a graph-optimization
system tailored for SLAM pipelines. The work focuses on simplicity, accuracy and speed,
reaching excellent results in each of the targeted fields.

In particular, this back-end aims attention at 3D pose-graphs and 3D pose-landmark
problems, producing outcomes comparable to current state-of-the-art systems like g2o

[1].

At its core there is a novel error function for SE(3) objects based on the concept of
matrices’ chordal distance. This approach reduces the problem’s non-linearity bringing
several benefits to the computation. The fastness of the system is due to a well-designed
implementation that performs zero memory copy during the iterative part and that
exploits SIMD instructions of modern CPUs and a smart use of the CPU cache.

Finally, the system has been tested on both synthetic and real-world datasets and
in both scenarios it succeeded in its purposes, being able to produce results better or
comparable to state-of-the-art systems in only 5 thousands lines of code.
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Nomenclature

Notation

ARB(α, β, γ) Rotation from frame A to frame B expressed in A
AtB(tx, ty, tz) Translation from frame A to frame B expressed in A
ATB(R, t) Transformation from frame A to B expressed in A
AτB(R, t) Transformation from frame A to B expressed in A (vectorized)

btc× Skew-symmetric matrix of a vector t ∈ R3×3

Acronyms and Abbreviations

SLAM Simultaneous localization and mapping

SfM Structure from Motion

BA Bundle Adjustment

SCLAM Simultaneous Calibration Localization and Mapping

MAP Maximum A Posteriori

LS Least Squares

PSD Positive Semi-Definite

PDF Probability Distribution Function

Landmark Salient point in the world (2D or 3D)

Feature Specific structural part of interest in an image (2D)

Tracking Procedure of spatial and temporal re-identification of landmarks

Loop closure Interconnection between landmarks in space

GPS Global Positioning System (generally referring to whole unit)

LiDAR Light Detection and Ranging o Laser Imaging Detection and Ranging

Sonar SOund Navigation And Ranging

FLOP Floating Point OPeration

FLOPS Floating Point Operations Per Second

OpenCV Open source Computer Vision (library), www.opencv.org

Git Git revision control, www.git-scm.com
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Chapter 1

Introduction

Mobile robots, in order to accomplish tasks in real world more easily and in an
efficient way, need to have a map of the environment and to localize themselves into the
map. Furthermore, in some environment it is not possible to rely on external reference
systems - e.g. GPS - and, thus, they can count only on on-board sensors. Simultaneous
Localization and Mapping (SLAM) addresses the problem of learning the map under
pose uncertainty.

There are many scenarios in which SLAM is fundamental for the accomplishment
of a task, not only in pure Robotics. SLAM, in fact, is a common problem in different
domains of application. For example, in Robotics it is fundamental for indoor navigation
of mobile robots - e.g. an autonomous vacuum cleaner or a service robot in a museum - or
to navigate through extreme environments - e.g. underwater rescues or space exploration.
Additionally, new technologies that involve different kind of agents - i.e. not robots - are
now using SLAM. One of the most trending is Augmented Reality (AR). Always more
powerful mobile devices - like smartphones or tablets - are now able to exploit SLAM
to deliver stunning virtual experiences. Without any doubts, this technology is going to
gain always more popularity and to impact on the research in this topic.

(A) (B)

Figure 1.1: Application Examples. The image in 1.1A represents the well-known Roomba
Autonomous vacuum cleaner, which is able to recognize where it is in the room, if it has already
cleaned a place or if it is going toward a dangerous path - e.g. stairs; image 1.1B depicts an AR
mobile game developed using the Apple ARKit.

As the reader might notice, SLAM is a popular problem and the research community
is focusing on it since many years. Several solutions have been proposed through the
years and now current state-of-the-art SLAM systems are able to deliver impressive
results in real-world scenarios. The most used formulation for the SLAM problem is

1



1. Introduction 2

the so-called graph-based SLAM. In this approach, two sub-systems cooperate with each
other to retrieve the best robot trajectory and world configuration given the on-board
sensors’ measurements. Therefore, the full slam system is composed by:

1. Front-end : it exploits sensor data to build an hyper-graph whose nodes are either
robot poses or the position of salient points in the world;

2. Back-end : it is in charge of performing non-linear optimization of the graph to
retrieve the most likely configuration that suits the measurements.

In this work, we propose a back-end system built from scratch that is able to per-
form fast and accurate graph optimization for 3D environments. The work is focused on
simplicity and minimalism also in its implementation, in order to be comprehensible by
non-expert people that want to understand how the system works. Despite its minimal-
istic fashion, system’s results are comparable - or even better in some scenarios - to the
ones of other state-of-the-art systems, thanks to the use of some novel theoretic ideas
and to a well-designed implementation. In particular, this work shows the effectiveness
of a new error function for SE(3) objects (Section 5.3) and an implementation with
zero memory copy during the optimization process (Section 6.3).

The remaining of this document is organized as follows:

• Chapter 2: overview of the problem and of methodologies employed through the
years, with a particular focus on noteworthy systems;

• Chapter 3: problem statement and fundamental theoretic concepts related to the
non-linear optimization problem;

• Chapter 4: sketch of the most common SLAM problem formulations;

• Chapter 5: deeper examination of 3D formulations and further analysis of the
proposed approach;

• Chapter 6: details about code design and implementation choices;

• Chapter 7: focus on two full SLAM systems that uses the proposed system as
on-line back-end;

• Chapter 8: final considerations and possible future investigations.



Chapter 2

Related Work

Simultaneous Localization and Mapping represents a well known complex mathe-
matical problem, based on non-linear optimization. It has been studied by the scientific
community since the 80s [3, 4]; during this early stage, its statistical formulation has been
investigated, proposing interesting results that will constitute, basically, the baseline for
all the future SLAM systems.

After some years, in the 90s, the community came-up with early solutions for the
SLAM problem. The first systems able to produce appreciable results in terms of speed
and accuracy were based on Extended Kalman Filters (EKF) [5, 6]. EKFs allow to deal
with problem’s non-linearity through effective approximations and to represent multi-
variate distributions with a small number of parameters. This success encouraged the
research community to perform deeper investigations in filtering approaches [7]. Particle
filters started to gain popularity, in particular Rao-Blackwellized Particle Filters [8]: the
work of Montemerlo et al. [9] was the first SLAM system able to deal with thousand of
landmarks with a good accuracy.

However, filtering approaches revealed not to be the best answer to the SLAM prob-
lem due to the computational complexity of the solution, especially when dimensions
start to grow. Moreover, system’s accuracy is affected by the problem’s non-linearities,
leading to sub-optimal solutions. For these reasons, Maximum A Posteriori (MAP) ap-
proaches started to be taken in consideration and the community took a step back to the
work of Lu et al. [10]. Filtering-based approaches align local pose frames incrementally
and, thus, different parts of the model are updated independently, generating incon-
sistencies in the final model. MAP optimization takes into consideration all the local
frames and the relations between them at once, leading to a more consistent model and
better accuracy. Lu et al. embedded all the pose relations into a network with nodes
and edges, allowing efficient optimization. However, when they published their work,
the computers’ computational power was not sufficient to deliver good performance and,
thus, this solution was put aside.

Nevertheless, this work represents the precursor to one the most intuitive SLAM for-
mulation, called graph-based SLAM, that exploits the computing power of recent robots
to deliver impressive performances. In this paradigm, the robot builds an hyper-graph
whose nodes represent either robot poses or salient points in the world - called landmarks
- while the hyper-edges encode sensors’ measurements between subsets of nodes.

Graph-based SLAM systems have two main components: front-end and back-end.

3



2. Related Work 4

The former uses data acquired by robot’s sensors to populate the hyper-graph, abstract-
ing raw data into a model that is amenable for optimization. The front-end has to
determine the most likely constraint that involves a subset of nodes given an incoming
measurement, solving the so-called data association problem - short-term and long-term.
Short-term data association has to match corresponding features among consecutive
sensor measurements - e.g. stating that visual features detected in multiple consecutive
frames represent the same 3D world point. Long-term data association, instead, expresses
a more complex problem: it has to associate new measurements to already encountered
world points, generating the so-called loop-closures - e.g. when a robot passes multiple
times across the same place, it has to recognize that it is re-observing the same points
in order to generate a map that is consistent with the environment. As for the sensors
used, state-of-the-art systems usually acquire data from cameras (RGB or RDB-D) or
3D-LiDARs. The former, in particular, it is gaining much attention from the research
community since they are - generally - cheap and can be mounted basically on every
electronic device in single or stereo configuration.

This work, however, focuses on system’s back-end, assuming that the given front-end
provides consistent estimates. The back-end takes as input the graph and computes the
most-likely map given all the constraints. Systems based on this formulation represent
the gold standard for map optimization, thus, in the next sections it is proposed a brief
overview of the most successful implementations.

Dense Approaches

The work of Lu et al. [10] was the first of its kind: map estimation is obtained through
global optimization of the error function deriving from constraints between different
poses. They employed a combination of relation-based and location-based representations,
where the former were fixed while the latter were treated as free variables. Those pose-
relations were used to construct a network whose nodes were robot poses taken from
its trajectory while the constraints between nodes were the pose-relations. Finally, the
optimization problem exploits the network to obtain an objective function that will be
minimized: the total energy will decrease as the difference between estimated relative
pose that involves two nodes and the measured value tends to zero.

It is good to notice that, in this formulation, the computational power needed for the
optimization grows cubically with the number of variables involved, thus, it is O(N3)
where N represents the number of poses. Gutmann and Konolige addressed this problem
in their work [11] proposing a method to incrementally build the network and that
determines topologically correct relations between poses.

Those approaches opened the path to a series of study in this direction, that will lead
to current state-of-the-art optimizers.
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Olson’s Gradient Descent

Evident limitations of the previously seen approaches are that their solution highly
depends from the initial estimate of the state. The initial guess is derived from dead-
reckoning and, thus, if this is not consistent the system will converge to a local minimum,
giving a sub-optimal solution. Olson et al. [12] addressed this issue, proposing a non-
linear optimization algorithm that quickly converges to a good approximation of the
global minimum.

They achieved such results combining two new aspects: the first one is the use of a
variant of Stochastic Gradient Descent algorithm, which is robust against local minima
and has a fast convergence rate; the second one is an alternative state-space representation
that has good stability and computational properties. This last feature, in particular,
allows to update many poses with a relatively small computational cost in a single iter-
ation. Moreover, the memory consumption has been lowered together with the run time
- respectively O(N + M) and O(log(N)), where N represents the number of poses and
M the number of constraints.

Smoothing and Mapping

Smoothing and Mapping, shortened as SAM, follows the path of global trajectory
optimization described in the previous Section. Dellaert et al. proposed with square root
SAM (

√
SAM) [13] a system able to deal with full SLAM problems: those require the

estimation of the entire set of sensor poses along with the parameters of all the features in
the environment. This problem is also known in Photogrammetry as bundle adjustment
and as structure from motion in Computer Vision.
√
SAM performs fast optimization exploiting the problem’s intrinsic sparsity. Know-

ing that the measurement Jacobian matrix A is sparse, it is possible to solve the relative
linear system in a faster way through a good variable reordering together with QR or
Cholesky factorization. For those reasons,

√
SAM can optimize larger graph without

losses in terms of performances or accuracy.

Further improvements were introduced with iSAM - incremental SAM - developed
by Kaess et al. [14]. The foundations were the same as

√
SAM , but in this case

the system operates incrementally, without the need of fully refactoring the whole QR-
decomposition, but updating it every time a new measurement is available. With this
solution, it was possible to address real-time problems since the optimization process is
faster than before.

The next iteration of this branch of solutions, is represented by iSAM2 [15]. In this
case, a new data-structure is proposed, the Bayes tree, to map better the square root
information matrix of the problem. Employing Bayes trees, the algorithm is able to
further improve the performances, exploiting incremental variable re-ordering and fluid
relinearization, eliminating the need for periodic batch steps.
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TORO

Grisetti et al. proposed in their work TORO [16] - Tree-based netwORk Optimizer
- an extension of Olson’s algorithm to efficiently manage 2D and 3D graph-based opti-
mization problems.

This frameworks has several features that allow it to achieve good performances in
terms of speed and accuracy. The first one is a revisited version of the standard Stochastic
Gradient Descent used to perform the optimization process, together with a technique
to efficiently distribute the rotational error over a sequence of 3D poses [17]. In fact, due
to the non-commutativity of rotational angles in 3D, major problems may arise when
applying approaches that are designed for a 2D world. As a result, TORO converges by
orders of magnitude faster with respect to previous approaches.

Moreover, it employs a tree parametrization of the nodes [18] that significantly im-
proves the performances and allows to deal with arbitrary network topologies. This
consented the authors to bound algorithm complexity to the size of the mapped area
and not to the trajectory’s length, yielding accurate maps of the environment in a small
amount of time.

G2O

The work of Kümmerle et al. [1] is an open-source C++ frameworks for optimizing
non-linear least squares problems that can be represented as a graph. Its generality
together with a cross-platform implementation made g2o one of the most successful
graph optimization tool, which is employed in many state-of-the-art full SLAM systems.

This work focuses on efficiency, which is achieved at various levels: it exploits graph
sparsity and takes advantage of the graph’s special structure to perform fast optimization;
it uses advanced methods - Cholesky decomposition through CHOLMOD library - to
solve sparse linear system; finally, it utilizes modern processor’s features to perform
fast math operation optimizing cache usage - e.g. SIMD instructions. Moreover, this
frameworks offers the possibility to choose between different algorithms - i.e. Gauss-
Newton, Levenberg-Marquardt - and linear solvers - direct and iterative.

Our approach still delivers comparable performances with respect to g2o while being
lightweight and more simple to include in a full SLAM pipeline. In fact, g2o is a big
framework, with over 40 thousands lines of code and, thus, its inclusion may add weight
to the system.

GT-SAM

GT-SAM is a C++ library developed by Dellaert et al. [19] at the Georgia Institute
of Technology, which provides solution to a wide range of SLAM and Structure From
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Motion (SfM) problems, based on factor-graph optimization. It provides both C++ and
MATLAB implementations that allow to easily develop and visualize problem solutions.

This work - like it has been previously seen in g2o - also focuses on efficient optimiza-
tion and takes advantage of the graph sparsity to deliver fast and accurate performances.
However, this framework is even more big and complex - over 300 thousands lines of code
- making it very difficult to unravel and understand what is under the hood.

HOG-Man

Grisetti et al. in their work [2] proposed an optimization system designed for accurate,
fast and memory efficient on-line operations: HOG-Man - which stands for Hierarchical
Optimization on Manifolds.

Figure 2.1: HOG-Man. The image - courtesy of [2] - sketches the idea behind this approach:
the systems creates multiple ”views” of the graph’s structure, each with a different level of
abstraction. Proceeding from left to right it is shown the original structure - i.e. the bottom of
the hierarchy - a mid level representation and the final structure - i.e. the top of the hierarchy.

At its core there is a hierarchical approach to graph optimization: during on-line
mapping, it optimizes only the coarse structure of the environment and not the whole
map. The simplified problem that is solved, however, contains all the relevant information
to let the front-end solve properly the data association problem.

It is good to notice, that there are different level of abstractions: the bottom is the
original input, while higher levels are always more compact. When the top levels are
modified, only portions of the underlying ones are updated, namely the ones subject
to consistent modifications. This method limits the computational power needed for
on-line operations while preserving global consistency, outperforming several previous
approaches.
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Tectonic-SAM

Ni et al. propose a way to reduce the computational effort due to the linearization
update, based on sub-map partitioning: Tectonic SAM [20] - shortened as T-SAM.

The original problem is addressed through a divide and conquer approach which
produces local sub-maps. Those smaller maps are individually optimized and then the
local linearization can be cached and reused when sub-maps are combined into a global
map, speeding up the linearization process. Sub-maps have a base node that capture
their global position and the authors showed that, under mild assumptions, this approach
leads to the exact solution.

The next iteration - called T-SAM2 [21] - proposes an algorithm that partitions the
SLAM factor-graph into a sub-map tree, performing the optimization from leaves to root.
In T-SAM, partitioning was done using edge separators; moreover, T-SAM was not able
to maintain hierarchical maps, leading to poor scalability with respect to larger datasets.
All those problems were addressed in T-SAM2, where partitioning is done employing the
nested dissection algorithm that, together with a novel multi-level approach, provides a
more efficient and robust exact solution.

Condensed Measurements

The solution of least-squares problems that can be represented as factor-graph -
like in SLAM and SfM - is contingent to both initial estimate and sensor models’ non-
linearities. Grisetti et al. proposed a way to enlarge the convergence basin based on the
divide and conquer approach that exploits the factor-graph’s structure [22].

The core of this formulation is to divide the graph into small locally connected sub-
graph, each of which represents a sub-problem that can be robustly solved - like it has
been suggested in previous systems like HOG-Man [2] and T-SAM [21]. In order to
consistently combine the local sub-graphs, the authors build a simple factor-graph from
the sub-graphs, constraining the relative positions of the variables in the solution. For
this reason, the sub-graphs are called condensed measurements. The resulting problem
is more convex with respect to the original one and, thus, there are more chances of
finding the correct minimum that can be used as initial guess for standard minimization
algorithms - e.g. Levenberg-Marquardt.

This formulation allows to recover from bad initial estimations, where most of the
other approaches fail - both batch and direct ones - but, unfortunately, it does not deliver
real-time performances.



Chapter 3

Basics

The goal of this chapter is to introduce the reader to the mathematical fundamentals
underlying the system developed. Obviously, it will be a brief overview, therefore, ref-
erences to literature are provided if the reader would like to go more in detail with the
proposed concepts.

Least Square SLAM

In this section it proposed an insight of least-squares state estimation of non-linear
stationary systems [23].

Suppose to have a stationary system W whose state is parametrized by a set of N
non-observable state variables x = {x1, ...,xN}. Suppose that it is possible to indirectly
observe the system state with different generic sensors, those will generate a set of K
measurements represented by z = {z1, ..., zK}, where zk is intended to be the kth

measurement. Since the measurements are affected by noise, those are assumed to be
random variables. Moreover, the state embeds all the knowledge needed to predict
the measurements’ distribution.

Since measurements are affected by noise, it is impossible to compute the state given
the measurements. What is possible to evaluate, instead, is the states’ distribution known
the measurements, which can be formalized as following conditional probability :

p (x|z) = p (x1, ...,xN |z1, ..., zK) =

= p (x1:N |z1:K) (3.1)

The probability distribution 3.1 is complex to retrieve in close form, for several rea-
sons:

• The mapping between measurements and states can be highly non-linear, producing
a multi-modal probability distribution with a complex shape.

• Each measurement zk in general observes only a subset of the state parameters.
Moreover, the number of measurements may not be sufficient to fully characterize
the state distribution.

9
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• Measurements can be wrong - generating outliers - or it is impossible to map any
of the state variable to a specified measurement.

However, what is possible to compute more easily is an estimate of the probability
3.1. To do so, we analyze the conditional distribution p (zk|x): this is a predictive
distribution called sensor model or observation model, which formalizes the probability
of having a certain measurement assuming to know system’s state. Extending this to all
the measurements, you will get the following distribution:

p (z|x) = p (z1:K |x1:N ) (3.2)

As it has been stated before, the state fully describes the measurements, rendering
the single distributions p (zk|x) independent from each other. Exploiting this feature, it
is possible to rewrite the 3.2 as follows:

p (z1:K |x1:N ) =
K∏
k=1

p (zk|x1:N ) (3.3)

The equation 3.3 describes the measurements’ likelihood given the state. Recalling
the Bayes rule [24] and applying it to 3.1 you will obtain the following relation:

p (x1:N |z1:K) =

likelihood

p (z1:K |x1:N )

prior

p (x1:N )

p (z1:K)

normalizer

=

=

∏K
k=1 p (zk|x1:N ) px

pz
=

= ηzpx

K∏
k=1

p (zk|x1:N )

In this relation, p (x1:N ) represents our prior knowledge about the state distribution
and, thus, supposing to know nothing about it, it is represented by a uniform distribu-
tion whose value is a constant px. p (z1:K) instead is just a normalizer for the overall
probability function and does not depend from the states, therefore it is assumed to be
a constant pz. This leads to the following relation:

p (x1:N |z1:K) ∝
K∏
k=1

p (zk|x1:N ) (3.4)

Equation 3.4 represents the core of the entire least-square formulation. This will be
exploited in the next subsections to approximate the distribution of interest, minimizing
a defined cost function.
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Direct Minimization

Starting from the relation 3.4 it is possible to initialize a minimization problem.
Assuming that the measurement are affected by Additive White Gaussian Noise, the
observation model probability p (zk|x1:N ) will be described by a Gaussian distribution
N (µ,Ω−1), leading to the equation

p (zk|x1:N ) ∝ exp (−(ẑk − zk)Ωk(ẑk − zk)) (3.5)

where ẑk is the prediction of the measurement given the state, while Ωk = Σ−1
k repre-

sents conditional measurement’s information matrix. The predicted measurement ẑk is
a function of the state; in particular it is obtained applying the sensor model hk(·) to
the state, in formulæ:

ẑk = hk(x) (3.6)

In SLAM - and other similar problems like SfM - the sensor model is a highly non-linear
function, making the problem more complex and heavy from a computational point of
view. Nevertheless, generally the sensor model is smooth enough to be approximated
with its first-order Taylor expansion in the neighbor of a linearization point x̆, leading
to:

hk(x̆ + ∆x) ≈ hk(x̆) +
∂hk(x)

∂x

∣∣∣∣
x=x̆

∆x = hk(x̆) + Jk∆x (3.7)

where Jk = ∂hk(x)
∂x

∣∣∣∣
x=x̆

is the Jacobian evaluated in x = x̆.

The next step consists in finding a linearization point x? that maximizes the obser-
vation model, leading to the following relations:

x? = argmax
x

p(z|x) =

= argmax
x

K∏
k=1

p(zk|x) =

= argmax
x

K∏
k=1

exp
(
−(hk(x)− zk)

TΩk(hk(x)− zk)
)

=

= argmin
x

K∑
k=1

(
(hk(x)− zk)

TΩk(hk(x)− zk)
)

The relation ek(x) = hk(x) − zk represents the error function, and, thus, the optimal
linearization point will be given by the minimization of the following cost function:
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F (x) =
K∑
k=1

eTk (x)Ωkek(x)

ek(x)

(3.8)

In order to find the optimum linearization point, the system must start from a reasonable
initial guess x̆ - to avoid local minima - and apply an increment ∆x directed toward x?.
Applying the perturbation ∆x in the error function and approximating again through
the first-order Taylor expansion we will obtain

ek(x̆ + ∆x) =
(
hk(x̆ + ∆x)− zk)

TΩk(hk(x̆ + ∆x)− zk)
)

=

≈ (Jk∆x + hk(x̆)− zk)
TΩk(Jk∆x + hk(x̆)− zk) =

= (Jk∆x + ek(x̆))TΩk(Jk∆x + ek(x̆)) (3.9)

Further expanding the quantities in the equation 3.9, it is possible to obtain the following
relation:

ek(x̆ + ∆x) ≈ ∆xT
Hk

JTk ΩkJk ∆x + 2

bk

JTk Ωkek(x̆) ∆x +

ck

eTk (x̆)Ωkek(x̆) =

= ∆xTHk∆x + 2 bk∆x + ck (3.10)

Extending the perturbation to the total cost function expressed in equation 3.8 and
plugging what stated in 3.10 we will obtain:

F (x̆ + ∆x) ≈
K∑
k=1

[
∆xTHk∆x + 2 bk∆x + ck

]
=

= ∆xT

[
K∑
k=1

Hk

]
H

∆x + 2

[
K∑
k=1

bk

]
b

∆x +
K∑
k=1

ck

c

=

= ∆xTH∆x + 2 b∆x + c (3.11)

It is good to notice that equation 3.11 represents a quadratic form in ∆x. Thus,
finding the minimum of this formula will give us the optimal perturbation ∆x such that

x? = x̆ + ∆x

In order to find the minimum of equation 3.11 we derive it in ∆x, we equal the derivative
to zero and finally we solve the resulting equation for ∆x; in formulæ:
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∂
(
∆xTH∆x + 2 b∆x + c

)
∂∆x

= 2 H∆x + 2 b = 0 (3.12)

Therefore, in order to find the solution of equation 3.12 and finally get to the optimal
perturbation, we must solve the following linear system:

H ∆x? = −b (3.13)

Algorithm 1 Standard Gauss-Newton minimization algorithm

Require: Initial guess x̆; a set of measurements C = {〈zk,Ωk〉}
Ensure: Optimal solution x?

1: Fnew ← F̆ . compute the current error

2: while F̆ − Fnew > ε do
3: F̆ ← Fnew
4: b← 0
5: H← 0

6: for all k ∈ {1, ...,K} do
7: ẑk ← hk(x̆) . compute prediction
8: ek ← ẑk − zk . compute error

9: Jk ← ∂hk(x)
∂x

∣∣∣∣
x=x̆

. compute Jacobian

10: Hk ← JTk ΩkJk . contribution of zk in H
11: bk ← JTk Ωkek . contribution of zk in b
12: H += Hk . Accumulate contributions in H
13: b += bk . Accumulate contributions in b
14: end for

15: ∆x← solve(H∆x = −b) . Solve linear system
16: x̆ += ∆x . Apply increment
17: Fnew ← F (x̆) . Update the error
18: end while

19: return x̆

It is good to notice that, if the sensor model hk(·) is a linear function of the state, it
is possible to find the minimum in just one iteration. However, since it is almost never
the case in our cases of study, a solution must be found iteratively, until convergence
is reached. To do so, it is possible to use the Gauss-Newton algorithm - described
in Algorithm 1. However, Gauss-Newton is not guaranteed to converge in general. The
convergence is subject to several factors, like the smoothness of the error function used or
the initial guess - i.e. if it is close to potential singularity or far from the optimal solution.
Levenberg-Marquardt iterative algorithm is variation of Gauss-Newton that enforces the
convergence - shown in detail in Algorithm 2. It solves a damped version of the linear
system 3.13, described by the following formula:
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(H + λI) ∆x = −b (3.14)

where λ is a scalar damping factor. The algorithm does not diverge, but it may converge
to a local minimum and, thus, retrieving a sub-optimal solution.

It is good to notice that the system developed in this work uses the Gauss-Newton
algorithm, since the error function has been properly manipulated to be more linear with
respect to other approaches. Obviously, more details can be found in the next Chapters.

Manifolds

In the previous Section it has been shown how to compute the optimal solution to
the problem through Least-Squares estimation. However, two strong assumptions have
been made:

1. The measurement function is smooth enough to be approximated by its first-order
Taylor expansion without loss of generality

2. The state space spans over an Euclidean domain, and, thus x ∈ Rn

While the first hypothesis is true in general, the second one is almost never verified in
SLAM problems. For example, if the state of the system is the robot 3D-pose, it involves
to deal Euler angles or rotations in general; therefore the state belongs to SE(3) - namely
the Special Euclidean group of dimension 3. In this topological spaces, operations like
sum or the product are not defined as in Rn, thus they are illegal - i.e. summing 2 triads
of Euler angles will lead to an inconsistent result or to singular configurations.

However, in SLAM - as in SfM or BA - the state generally belongs to topological
spaces that locally resemble the Euclidean space, called manifolds. This means that
each point of an n−dimensional manifold has a neighborhood that is homeomorphic to
Rn. Examples of manifolds are spheres or toruses, which are locally flat - the reader can
think to the Earth that, for its inhabitants, seems flat.

Stepping back to our problem, it is possible for us to use this property to perform
Least-Square estimation also with state spaces that are manifold. Assuming that our
state belongs to SO(3) - 3D rotations - if we represent it through a rotation matrix
R(φ, θ, ψ) it is not possible to simply sum two quantities since it is not enforced the
matrix’s orthogonality. A minimal representation, instead, x = (φ, θ, ψ) will lead to
singularities. However, if we are in a neighborhood of the origin, Euler angles are away
from singularities. Thus we can define an operator box-plus that locally sums two quan-
tities, exploiting manifold’s property. The same must be done for other mathematical
operators. In the case of rotation, we can define the following operators:

R = R0 � u = toMatrix(u) R0 (3.15)

u = R � R0 = toEuler(RT
0 R) (3.16)
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Algorithm 2 Standard Levenberg-Marquardt minimization algorithm

Require: Initial guess x̆; a set of measurements C = {〈zk,Ωk〉}
Ensure: Optimal solution x?

1: Fnew ← F̆ . compute the current error
2: xbackup ← x̆ . backup the solution
3: λ← computeInitialLambda(C, x̆)

4: while F̆ − Fnew > ε ∧ t < tmax do
5: F̆ ← Fnew
6: b← 0
7: H← 0

8: for all k ∈ {1, ...,K} do
9: ẑk ← hk(x̆) . compute prediction

10: ek ← ẑk − zk . compute error

11: Jk ← ∂hk(x)
∂x

∣∣∣∣
x=x̆

. compute Jacobian

12: Hk ← JTk ΩkJk . contribution of zk in H
13: bk ← JTk Ωkek . contribution of zk in b
14: H += Hk . accumulate contributions in H
15: b += bk . accumulate contributions in b
16: end for
17: t← 0 . n. of iterations λ has been adjusted

18: while t < tmax ∧ t > 0 do
19: ∆x← solve ((H + λI)∆x = b) . solve damped linear system
20: x̆ += ∆x . apply increment
21: Fnew ← F (x̆) . update the error
22: if Fnew < F̆ then
23: λ← λ/2 . good step, accept the solution
24: xbackup ← x̆
25: t← t− 1
26: else
27: λ← λ ∗ 4 . bad step, revert the solution
28: x̆← xbackup
29: t← t+ 1
30: end if
31: end while

32: end while

33: return x̆

The operators � and � convert a global difference in the manifold into a local pertur-
bation and vice versa.

Now we have to feed this new formalizations into the previously seen Least-Squares
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algorithm. From now on, X indicates the over-parametrized representation of the state,
while x the minimal one - i.e. a vector. Recalling the equation 3.7, to linearize the
problem it is necessary to apply a perturbation ∆x to the current estimate of the state
X̆. However, to do so, it must be employed the new operator sum. Moreover, X̆ can be
treated as a constant since is the current estimate of the system; still, it is possible to
span the state space by varying ∆x (minimal representation). Therefore, the first order
Taylor expansion of hk(X̆ � ∆x) is computed with respect to ∆x, in the linearization
point ∆x = 0. This leads to the following new formulation:

hk(X̆ � ∆x) ≈ hk(X̆) +
∂hk(X � ∆x)

∂∆x

∣∣∣∣
∆x=0

J̃k

∆x = hk(X̆) + J̃k∆x (3.17)

It is good to notice that the formulation 3.17 is topologically similar to the equation 3.7
with obvious differences due to the manifold state space.

As a consequence of what we have seen so far, in order to compute the optimal X̆,
the operator � must be used to apply the optimal increment, leading to the following
relation:

X? = X̆ � ∆x? (3.18)

Until now, it has been assumed that the measurements lie on Rn. However, in our
case of study, those may lie on a manifold too. This means that we have to define
some new mathematical operators and minimal/redundant representations also for the
measurements, like it has been done for the states. In particular, we know that the
generic error function is ek(x) = hk(x) − zk; now it is necessary to introduce the new
operator difference, that leads to the following error formulation:

ẽk(X) = ẽk(ẑk, zk) = hk(X) � zk (3.19)

Equation 3.19 computes the error between the predicted measurement and the actual
one in the minimal space, centering the computation in zk. In general the error function
will be smooth and regular even using the operator �, since the displacement between
hk(X) and zk is generally small.

Applying a small perturbation ∆x to the prediction, it is possible to compute the
first order Taylor expansion of the error, which gives the following result:

ẽk(ẑk + ∆zk, zk) = (ẑk + ∆zk) � zk ≈

≈ ẑk � zk +
∂ ((ẑk + ∆zk) � zk)

∂∆zk

∣∣∣∣
∆zk=0

Jzk

∆zk (3.20)
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It is good to notice that the approximation of the error conditional distribution is de-
scribed by a Gaussian with mean ẑk�zk and covariance Σek|x = JzkΩ−1

k JTzk . The reader
must notice that projecting the measurement onto a minimal space using the operator �
makes the covariance of the conditional error distribution a function of the state - since
it depends by ẑk. Therefore, Σek|x must be computed at every iteration. However, in
our work we manged to keep the error function Euclidean, avoiding the computation of
Σek|x even if the measurements lie on SE(3) - e.g. in the case of pose measurements like
the ones generated by the odometry.

In order to simplify the computation J̃k it is possible to exploit the chain rule for
partial derivatives, which leads to following relation

∂ ek (x̆ � ∆x)

∂∆x
=
∂ek(x)

∂x

∣∣∣∣
x=x̆

Jk

+
∂(x̆ � ∆x)

∂∆x

∣∣∣∣
∆x=0

M

(3.21)

where Jk is the simple Jacobian computed in the Euclidean case, while M represents the
derivate of � operator evaluated in x̆. Given this, the total Jacobian J̃k computed on a
manifold is described by the relation

J̃k = JkM (3.22)

Finally, it is possible to plug all this new elements in the modified version of the Gauss-
Newton algorithm - or the Levenberg-Marquardt one - to perform the optimization process
properly with non-euclidean states and measurements, explained in detail in Algorithm
3.

Sparse Least Squares

In the previous Sections it has been introduced several powerful tools to estimate a
set of hidden variables given a set of measurements that are related to those variables.
However, the state vector - especially in SLAM applications - may easily become big
and, thus, it creates a big bottleneck that kills the performances. Still, it is possible to
overcome this dimensional problem exploiting the nature of the measurements. In fact,
a single measurement zk depends only by a subset xk = xr:s = {xr, ...,xs} ⊆ x1:N of the
whole state vector and this will lead to special structure of the Hessian matrix H.

Going deeper in this analysis, it is good to notice that each measurement contributes
to the Hessian H and the right-hand-side vector b with just one addend - namely Hk

and bk. The structure of those quantities depends by the Jacobian of the error function
and this last one depends only by the state variables involved by the measurement.

Recalling equations 3.7 and 3.22 and on the basis of what just stated, Jacobian’s
structure will be:
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Algorithm 3 Gauss-Newton minimization algorithm for manifold measurements and
state spaces

Require: Initial guess x̆; a set of measurements C = {〈zk,Ωk〉}
Ensure: Optimal solution x?

1: Fnew ← F̆ . compute the current error

2: while F̆ − Fnew > ε do
3: F̆ ← Fnew
4: b← 0
5: H← 0

6: for all k ∈ {1, ...,K} do
7: ẑk ← hk(x̆) . compute prediction
8: ek ← ẑk � zk . compute error with over-parametrized zk

9: J̃k ← ∂ẽk(hk(X�∆x),zk)
∂∆xk

∣∣∣∣
∆xk=0

. compute Jacobian of the error function

10: Jzk ←
∂((ẑk+∆zk)�zk)

∂∆zk

∣∣∣∣
∆zk=0

. compute Jacobian of the � w.r.t. ∆zk

11: Ω̃k ←
(
JzkΩkJ

T
zk

)−1
. Remap the information matrix

12: Hk ← JTk Ω̃kJk . contribution of zk in H
13: bk ← JTk Ω̃kek . contribution of zk in b
14: H += Hk . Accumulate contributions in H
15: b += bk . Accumulate contributions in b
16: end for

17: ∆x← solve(H∆x = −b) . Solve linear system
18: x̆← x̆ � ∆x . Apply increment
19: Fnew ← F (x̆) . Update the error
20: end while

21: return x̆

Jk =
[
0 · · ·0 Jk10 · · ·0 Jkh0 · · ·0 Jkq0 · · ·0

]
Nblocks

(3.23)

where each non-zero component Jkh = ∂ek(xk)
∂xkh

represents the partial derivative of the

error function deriving from zk, computed with respect to the parameter block xkh ∈ xk.
According to equation 3.10, the contribution to H and b will have the following anatomy:
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Hk =



. . .

JTk1
ΩkJk1 · · · JTk1

ΩkJkh · · · JTk1
ΩkJkq

...
...

...
JTkhΩkJk1 · · · JTkhΩkJkh · · · JTkhΩkJkq

...
...

...
JTkqΩkJk1 · · · JTkqΩkJkh · · · JTkqΩkJkq

. . .


(3.24)

bk =



...
Jk1Ωkek

...
JkhΩkek

...
JkqΩkek

...


(3.25)

The internal structure of H and b just shown, reveals some important properties of
those objects:

• b is a dense vector composed by N non-zero blocks.

• The Hessian H is a sparse symmetric matrix.

• Every new measurement q introduces q2 non-zero blocks in the Hessian.

Hessian’s sparsity is fundamental to perform efficient and fast optimization, especially
to solve the linear system 3.13. The literature proposes many approaches to efficiently
solve sparse linear systems, either with direct [25] or iterative [26] methods. One of the
most employed direct method uses the Cholesky factorization of the matrix - namely the
LU decomposition. In this case, the Hessian is decomposed into two triangular matrices
H = LU, where U = LT and L is a lower-triangular matrix. The solution to the original
system is found solving consecutively the following derived systems:{

L y = b

U ∆x = y
(3.26)

Since L and U are triangular matrices, the solutions of equations 3.26 can be easily
computed through Forward and Backward Substitution respectively. It is good to notice
that the Cholesky decomposition of a sparse matrix will have a greater number of non-zero
entries than the source, due to the fill-in deriving from the decomposition itself. However,
it is possible to reduce the fill-in with several techniques, like variable reordering. This
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is achieved pre and post-multiplying the source matrix - H - for a suitable permutation
matrix P. The Cholesky factorization will be applied to the permuted matrix PHPT =
L̂Û, preserving the sparsity and, thus, leading to faster solution of the linear system.

The literature proposes a lot of theory on how to retrieve the good ordering to reduce
the fill-in, minimize the FLOPs or to exploit parallel computation. Some of the most
effective orderings to reduce the fill-in are computed by Minimum Degree [27, 28], super-
nodal [29] and nested dissection based algorithms [30]. It is good to notice that this is
an NP-hard problem and several libraries have been developed to compute orderings in
a fast and efficient way [31].

Figure 3.1: Generic Factor Graph. The figure depicts the structure of factor graph. The
nodes are illustrated with colored squares and they can represent either a pose - in blue - or a
salient world point - in orange. Measurements coming from the sensors are the constraints that
connect the nodes, illustrated with circles - red for pose constraints and black for point ones.

Factor Graphs

Until now, it has been showed the methodology to solve a least-squares minimization
problem whose cost function is given by 3.8. In the previous Section, it has been under-
lined the sparsity of the problem. In particular it has been stated that, given the state
x = (x1, ...,xN ), the measurement zk represents a constraint relating only a subset of
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the whole state vector, namely xk =
(
xk1 , ...,xkq

)
⊆ x = (x1, ...,xN ). In this sense, the

error ek(ẑk, zk) describes how well the parameter blocks in xk satisfy the constraint zk
and, in fact, it is 0 when xk perfectly matches the constraint.

A problem that has this formulation, can be easily represented with a directed hyper-
graph, where

• Each parameter block xi ∈ xk represents a node i in the hyper-graph

• Each constraint zk represents an hyper-edge that links all the nodes xi ∈ xk.

Obviously, when the hyper-edges have size 2, the hyper-graph becomes an ordinary graph.
Figure 3.1 shows the concept underlying this problem formulation.

Graph-based formulations are very common for the SLAM problem, since they help
the optimization process and, in fact, most of the current state-of-the-art systems are
based on this formulation. In fact, exploiting the topology of the graph it is possible to
achieve better performances, both in terms of speed and accuracy of the solution.

Now that the underlying theory has been exploited, it is possible to better explain
the typical formulations of the problem addressed in SLAM. Therefore, the next Chapter
will propose an overview of the most common ones, in particular for 3D environments.



Chapter 4

Typical Problems

In this Chapter the reader will became familiar with typical formulations of SLAM
problems, with a particular focus on 3D environments. Obviously, there are several other
instances of the problem that will be not shown since they are not strictly related to this
work.

Pose Graphs

Pose Graphs represents the backbone of SLAM. In this problem, the state vector
x = (x1, ...,xN ) is composed by a 2D or 3D isometry, thus, each node of the graph xi
belongs to SE(2) or SE(3) - i.e. the Special Euclidean group of dimension 2 or 3.

The measurements are also 2D or 3D isometries that lie in SE(2) or SE(3). Therefore,
an edge zij that connects xi with xj represents the pose of node j expressed in the
reference frame of node i - e.g. zij = iTj .

This problem is very common in SLAM: suppose that we want to estimate the best
trajectory of a 2D robot, given only the odometry measurements. The odometry retrieves
robot’s motion from state xi to xj and encodes it into the transformation matrix iTj .
Moreover, supposing that the robot is also able to retrieve loop-closures, this would mean
that there is an edge between the nodes i and k. The related transformation is encoded
into the quantity zik = iTk.

Clearly, both states and measurements are non-euclidean. The extended parametriza-
tion of those quantities - as it has been stated before - is given by an isometry, while a
possible minimal representation can be a 3 vector (tx ty θ)

T . The next step is to define
the operators box-plus and box-minus. Therefore, we introduce the operators t2v and v2t
that allow to map an isometry into a 3 vector and vice versa. Given those operators, we
will have the following relations:

X � ∆x = X · v2t(∆x) (4.1)

Xa � Xb = t2v
(
X−1
b Xa

)
(4.2)

Since the measurement zij expresses pose Xj with respect to the reference system of
Xi, the predicted measurement zij can be computed as

22
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Ẑij = hij(X) = X−1
i Xj (4.3)

Given the relations 4.2 and 4.3, the error is computed as follows:

eij (X) = hij (X) � Zij =

= t2v
(
Z−1
ij X−1

i Xj

)
(4.4)

Finally, Jacobians must be computed and, to do so, we apply a perturbation to the
error function 4.4, that leads to the following relation:

eij (X � ∆x) = t2v
(
Z−1
ij (Xi · v2t(∆xi))

−1 (Xj · v2t(∆xj))
)

=

= t2v

Z−1
ij v2t(∆xi)

−1 X−1
i Xj

Ẑij

v2t(∆xj)

 =

= t2v
(
Z−1
ij v2t(∆xi)

−1 Ẑij v2t(∆xj)
)

(4.5)

The remaining part is just the computation of the following partial derivatives:

Ji =
∂ t2v

(
Z−1
ij v2t(∆xi)

−1 Ẑij v2t(∆xj)
)

∂∆xi

∣∣∣∣∣
∆xi=0,∆xj=0

(4.6)

Jj =
∂ t2v

(
Z−1
ij v2t(∆xi)

−1 Ẑij v2t(∆xj)
)

∂∆xj

∣∣∣∣∣
∆xi=0,∆xj=0

(4.7)

The final Jacobian will be non-zero only in the blocks relative to variables Xi and Xj ,
in formulæ:

J = [0 · · · 0 Ji 0 · · · 0 Jj 0 · · · 0] (4.8)

The reader might notice that the equation 4.5 is highly non-linear - as also the
operators t2v and v2t themselves - and this will lead to a less accurate approximation
obtained from the first-order Taylor expansion of the error 4.4 and to the computation
of complex derivatives given by 4.6 and 4.7. The situation becomes even worse in a 3D
environment, which will be better analyzed in the next Chapters.
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Pose-Landmark Graphs

In this Section we will propose another common formulation of the problem. Land-
marks represent the position of salient world points and here are employed to optimize
the trajectory of the robot, assuming that the position of those points is known in the
environment.

Taking in consideration again the 2D problem for simplicity, the true position of those
points in the world will be given by p = (px py)

T . The measurements zk are the position
of those point in the robot reference frame - namely zk = (zx zy)

T . It is good to notice
that while the state still belongs to SE(2), the measurements now are Euclidean. Both
the minimal and extended parametrization of the state can be taken from the previous
formulation - so they will be a 3 vector x = (txtyθ) and a 2D isometry X = WTR
respectively. Also the operators � and � remain unchanged. The 2D isometry Xi is
composed by a rotational part Rθ and a translational one t, in formulæ:

X =

[
Rθ t
0 1

]
Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
t =

(
tx
ty

)
(4.9)

Given those considerations, it is possible to define the new prediction of the measure-
ment:

ẑij = hij(X) = X−1
i pj

= RT
θ pj −RT

θ t (4.10)

Since the measurements are Euclidean - i.e. they lie in R2 - the error is just the
standard subtraction between prediction and measurement, namely eij(X) = ẑij − zj .
Applying a state perturbation to the error we obtain:

eij(X � ∆x) = (Xi v2t(∆xi))
−1 pj − zj (4.11)

To facilitate the computation of the derivatives, it is possible to define the box-plus op-
erator as the pre-multiplication of v2t(∆x) to the state isometry, namely X � ∆x =
v2t(∆x) X. Moreover, instead of considering the state as X = WTR - i.e. the transfor-
mation from world to robot expressed in the world reference frame - it is more advisable
to use its inverse. Therefore, the state now is X = RTW = WT−1

R - i.e. the trans-
formation from robot to world expressed in the robot reference frame. Introducing this
notation together with the new box-plus operator, equations 4.10 and 4.11 become:

ẑij = hij(X) = Xi pj = Rθpj + t (4.12)

eij(X � ∆x) = v2t(∆x) Xi pj

p̃j

−zj (4.13)
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The Jacobian is now more straightforward and it is computed as follows:

Ji =
∂eij(X � ∆x)

∂∆x

∣∣∣∣∣
∆x=0

=

=

∂

(
p̃x cos(∆θ)− p̃y sin(∆θ) + ∆tx
p̃x sin(∆θ) + p̃y cos(∆θ) + ∆ty

)
∂∆x

∣∣∣∣∣
∆x=0

=

=

[
I2×2

−p̃y
p̃x

]
(4.14)

Now that we defined every aspect of the problem, it is possible to embed everything
in the already seen Least-Squares algorithm to find the optimal state.

Pose and Landmark Estimation

This problem instantiation is more complex with respect what has been proposed in
the previous Sections. In Section 4.1 the constraints were only of type pose - i.e. they
lie on SE(n) - while in Section 4.2 they were only of type point - i.e. they lie on Rn.

In this case we want to estimate both the robot trajectory and the world position of
the landmarks, given constraints of type pose and point. Considering again the 2D case
for simplicity, the state will be:

X =

 N poses

XR
1 , ...,X

R
N |

M landmarks

xLN+1, ...,x
L
N+M

 (4.15)

where XR
i = WTR ∈ SE(2) represents the i-th robot pose while xLj = p = (pxpy)

T ∈ R2

represents the world position of the j-th landmark. The set of increments ∆x will have
the structure seen in 4.15, namely:

∆x =

 N poses

∆xR1 , ...,∆xRN |
M landmarks

∆xLN+1, ...,∆xLN+M

 (4.16)

where ∆xRi = (∆txi ∆tyi ∆θi)
T and ∆xLj = (∆pxj ∆pyj )

T .

In order to properly apply the increment, it is necessary to define a suitable operator
box-plus. In this case, for the point increments it is possible to use the Euclidean sum,
while for the pose ones we will employ the already seen operator �, leading to X�∆xR =
v2t(∆xR) X.

Clearly, depending on the types of constraint that we linearize, it leads to different
contribution in the Hessian matrix H, so they will be analyzed separately.
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Pose-Pose Constraints

Here, for a 2D environment, it is possible to reuse what it has been shown in Section
4.1. Therefore, the predicted measurement Ẑij , the error eij and the perturbed error are
computed as follows:

Ẑij = hij(X) = X−1
i Xj

eij(X) = t2v
(
Z−1
ij X−1

i Xj

)
eij(X � ∆xR) = t2v

(
Z−1
ij v2t(∆xRi )−1 Ẑij v2t(∆xRj )

)
The complete Jacobian will be structured as in equation 4.8 and its components can be
computed employing the chain-rule for partial derivatives.

Pose-Point Constraints

It is possible to refer to what it has been shown in Section 4.2 for this part. The
reader might notice that in this formulation the robot pose is expressed in the world
reference frame - i.e. X = WTR - and, thus, we must stick to this notation also for
pose-point constraints. Therefore, supposing that the measurement zij relates the i-th
pose with the j-th point - indicated with Xi and xj = pj respectively - the predicted
measurement ẑij , the error eij and the perturbed error are computed as follows:

ẑij = hij(X) = X−1
i pj = RT

i pj −RT
i ti

eij(X) = ẑij − zj

eij(Xi � ∆xRi ,xj + ∆xLj ) =
(
v2t(∆xRi )Xi

)−1 (
pj + ∆xLj

)
− zj

In this formulation the state parameters are Xi and pj , the final Jacobian J will have
the following structure:

J = [0 · · · 0 JR 0 · · · 0 JL 0 · 0]

where

JR =
∂
[
(v2t(∆xi)Xi)

−1 (pj + ∆xj)− zj

]
∂∆xRi

∣∣∣∣∣
∆xR

i =0,∆xL
j =0

(4.17)

JL =
∂
[
(v2t(∆xi)Xi)

−1 (pj + ∆xj)− zj

]
∂∆xLj

∣∣∣∣∣
∆xR

i =0,∆xL
j =0

(4.18)
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The reader might notice how this formulation leads to more complex derivatives with
respect to the one reported in equation 4.14.

Once that all the needed objects are defined, it is possible to embed them in the
iterative algorithm to find the optimal state configuration.

Bundle Adjustment

The Bundle Adjustment problem is a very common formulation in Photogrammetry
and it is similar to the pose-landmark one seen in Section 4.2. In this case, the state is
composed by both camera poses - SE(3) objects - and 3D points, but those last ones are
observed through their projection onto the image plane.

Therefore, given a set of 3D points Xj viewed by a set of camera matrices P i and
indicating with xij the image coordinates of the j-th point projected through the i-th
camera, we want to find the most-likely configuration of camera matrices and 3D points
that suits the observations. This formulation corresponds to the minimization of the
following cost function:

min
P̂ i,X̂j

∑
i,j

d
(
P̂ i X̂j ,x

i
j

)2
(4.19)

where d(·, ·) is the Euclidean distance function. The distance between the 3D point
projected through P onto the image plane and the measured image coordinates is known
as the reprojection error.

The reader might have already noticed that the measurements lie on R2 - since they
represent image points. Clearly, the prediction, error perturbation and Jacobian are also
different, although those are not explicitly computed here, since they are not strictly
related to this work; further information on this topic can be found in [32, 33, 34].

Simultaneous Calibration Localization and Mapping

The formulations seen in the previous Sections, they all rely on the fact that all the
specific inner robot parameters are known - e.g. the position of the sensors mounted on
the robot with respect to the robot reference frame. Performing SLAM with a wrong
estimation of those parameters reduces the accuracy of the system, leading to non-
consistent estimations even after the optimization process.

In general to acquire those information, it is possible to proceed in different ways:

• Get those parameters from the robot’s specifics - if they are present;

• Measure those quantity manually on the robot;



4. Typical Problems 28

• Perform ad-hoc calibration before employing the robot in a mission.

All those procedures share the same drawbacks: they are not able to estimate non-
stationary parameters and, if the robot is subject to hardware changes, the calibration
procedure must be repeated.

A possible solution to this problem is to embed those parameters in the state and to
estimate them together with the robot trajectory and the map. This solution has been
proposed by Kümmerle et al. in their work [35] and it leads to several benefit to the
original SLAM problem. Therefore, in this Section it is proposed a brief overview of this
approach.

Given a generic robot in a 2D environment, we have to introduce the following quan-
tities:

• l = (lx ly θl) the pose of a generic sensor expressed with respect to the robot refer-
ence frame;

• ui and Ωu
i that represent respectively the motion command and its relative infor-

mation matrix;

• k the parameters of the robot’s forward kinematic.

The forward kinematic function K(u,k) converts the wheels’ velocities deriving from
the motion commands into the actual robot displacement from node i to i+1. For exam-
ple, taking in consideration a differential drive kinematic scheme, the motion commands
might be u = (vr vl)

T - respectively the left and right wheel velocity. Those lead to the
following relation to compute the relative motion obtained during a time step ∆t:

K(u,k) =

(
R(∆t ω) 0

0 1

)(
−ICC

0

)
+

(
ICC
∆t ω

)
(4.20)

where

ICC =

(
0

b
2
rlvl+rrvr
rlvl−rrvr

)
ω =

rlvl − rrvr
b

In this robot configuration rl and rr represent respectively the left and right wheel radii,
while b is the distance between the two driving wheels. Those quantities represent the
forward kinematic parameters k = (rr rk b)

T that we embed in the estimation process.

Given those objects, the optimization process has to retrieve the optimal configuration
[x? l? k?] that minimizes the following negative log-likelihood function F (x, l,k):
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F (x, l,k) =
∑
i,j

elij(x)TΩl
ij elij(x) +

∑
i

eui (x)T Ω̃l
i e
u
i (x) (4.21)

where elij(x) describes how well the parameter blocks xi, xj and l satisfy the constraint
zij , while eui (x) measures the likelihood of the parameter blocks xi, xj and k with respect
to the constraint ui. The two error functions elij(x) and eui (x) are described analytically
by the following relations:

elij(x) = ((xj � l) � (xi � l)) � zij

elij(x) = (xi+1 � xi) �K(ui,k)

where the operators � and � are the same of the ones described in the previous Sections.
It is good to notice that, in order to obtain consistent results, the information matrix Ωu

i

must be projected through the forward kinematic function K(u,k), for example using
the Unscented Transform [36].

Given the main notions about the most common formulations of the problem, in
the next Chapter it will be analyzed more in detail the solution for 3D factor graphs,
explaining also the main contributions brought by this work.



Chapter 5

Solving Factor Graphs with SE3
Variables

In this project it has been mainly addressed the optimization of 3D factor graphs.
In particular it has been developed from scratch a back-end system to efficiently perform
pose and pose-landmark graph optimization.

The reader might feel already comfortable with the formulation of those problems,
thus, in this Section will be shown more in detail the approaches used in order to achieve
real-time performances and how SE(3) constraints have been manipulated in order
to reduce problem’s non-linearity.

Exploit Sparsity

As it as been already mentioned in Chapter 3, standard optimization algorithms like
Gauss-Newton or Levenberg-Marquardt reduce the non-linear problem to the solution of
a linear system, namely:

H∆x = −b

Here, ∆x and b are dense vectors, while the Hessian’s approximation H is a sparse
matrix. The literature proposes a lot of methods to solve efficiently sparse linear systems.
Those can be categorized in two main groups:

1. Iterative methods [26] that compute a solution iteratively.

2. Direct methods [25] that solve the system in just one step.

The former ones like Conjugate Gradient or Generalized Minimal Residual Method -
shortened as GMRES - exploit fast matrix-vector product to deliver good performances
even if the solution is found iteratively. Those often use also preconditioning that consist
in the application of a transformation - called the preconditioner - that turns the system
into a form more suitable for numerical solving methods - e.g. Preconditioned Conjugate
Gradient (PCG). The latter group, instead, exploits matrix decompositions like Cholesky
or the QR-decomposition to efficiently retrieve a solution in one step. Crucial for those
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kind of methods is the fill-in - i.e. the increase of non-zero elements in the decomposition
with respect to the source matrix.

Figure 5.1: Cholesky Fill-In. The figure highlights the fill-in due to the factorization of a
(2000×2000) symmetric PSD matrix: non-zero blocks are depicted in white, while null-blocks in
black. The first row illustrates the patterns of matrices H and its decomposition L - respectively
on the left and on the right. In the bottom row, the same matrices after the permutation of
H using the AMD ordering. It is clear the ordering contribution in reducing the fill-in of the
factorization, minimizing the memory required to store L and the number of block-matrices
operations.

As already mentioned in Section 3.3, variable reordering techniques, that consists in
applying a suitable permutation to the source matrix, are able to reduce dramatically
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the fill-in, allowing a faster decomposition. Several algorithm are proposed in literature
to compute the proper permutation - e.g. AMD, COLAMD. For the Cholesky LU
decomposition it is also possible to evaluate the pattern of the L matrix before computing
the actual decomposition, through the Symbolic Cholesky Decomposition. The reader
might appreciate the variable reordering contribution in Figure 5.1.

In the remaining of the Section, it will be given a more detailed description on how
to solve a sparse linear system using the Cholesky decomposition of the matrix H.

Storage Methods for Sparse Matrices

Another core aspect of sparse matrices is that there are several techniques to store
them more efficiently, reducing the amount of memory needed. The most general ones
are Compressed Row Storage (CRS) or Compressed Column Storage (CCS), since they do
not make any assumption on the structure of the matrix but the do not store unnecessary
elements - i.e. the zeros. Those method store the matrix using only 3 vectors: one vector
for floating point numbers that represent the non-zero entries and two for the column
and row indexes respectively. As an example, given a matrix A

A =



10 0 0 0 −2 0
3 9 0 0 0 3
0 7 8 7 0 0
3 0 8 7 5 0
0 8 0 9 9 13
0 4 0 0 2 −1


in CRS format is represented by the following vectors - using zero-based indexing:

val =
[
10 −2 3 9 3 7 · · · 2 −1

]
col =

[
0 4 0 1 5 1 · · · 4 5

]
row =

[
0 2 5 8 12 16 19

]
The vector row contains the indexes of the elements that correspond to the first non-zero
entry of each row in the sparse matrix A.

List of Lists (LIL) represents another effective and easy-to-implement storage method.
In this case, each row-vector is represented as a list of pairs that denotes the column
index and the element’s value.

Recalling equation 3.24, since in this problem it has been considered only binary
constraints, the linearization of each edge generates 4 block-contributions to the Hessian,
namely:
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Hii = JTi Ωk Ji Hjj = JTj Ωk Jj

Hij = JTi Ωk Jj Hji = JTj Ωk Ji

Therefore, the Hessian can be intended to be a sparse block-matrix where each entry
is a matrix itself of a given size. In our work, it has been chosen to employ the LIL
storage method with block-entries, in order to speed-up the numerical computations -
better explained in the next Chapter.

Cholesky Decomposition

In linear algebra, the Cholesky decomposition (or factorization) is the decomposition
of a Hermitian, positive semi-definite (PSD) matrix into the product of a lower triangular
matrix and its conjugate transpose, namely:

A = L L? (5.1)

In this particular problem formulation, the matrices involved are composed by real num-
bers, therefore the conjugate transpose of L becomes its transposed LT = U. In this
sense, it represents the square-root operator for symmetric PSD matrices.

A more stable variant of the classical Cholesky decomposition is the LDL decompo-
sition. In this case, the original matrix is decomposed into the following product:

A = LDL? (5.2)

where L is a lower unit triangular matrix - i.e. all the entries on the main diagonal are
1 - and D a diagonal matrix. This variant requires the same space and computational
effort with respect to the original one but avoids the square-roots extraction. In this
way, even matrices that do not have a Cholesky decomposition can be factorized with
the LDL one. However, in this work, since the matrices take into account are symmetric
and PSD by construction, it has been chosen the original Cholesky decomposition.

In general the computational complexity for the factorization of a (n× n) matrix is
O(n3), requiring about n3/3 FLOPs. There are several algorithm available to compute the
factorization, however, one of the most common is the Cholesky-Banachiewicz. In this
algorithm the computation starts from the top-left corner of the matrix L and proceeds
the computation row-by-row as follows:

A = LLT =

L00 0 0
L10 L11 0
L20 L12 L22

 L00 L10 L20

0 L11 L21

0 0 L22


where
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Ljj =
√
Ajj −

∑j−1
k=1 L

2
jk

Lij = 1
Ljj

[
Aij −

∑j−1
k=1 Lik Ljk

]
for i > j

(5.3)

The Cholesky-Crout ’s algorithm, instead, is a column-wise version of the previous
one. It is good to notice that both algorithms allow to perform the computation also
in-place. Moreover, both algorithms can be employed in sparse block-matrices, leading
to a block-Cholesky factorization. The blocks are also computed as in Equation 5.3 but,
in the block case, the square root operator is applied to the matrix-block and it consists
in the Cholesky decomposition of the block itself.

As it has been already mentioned, the main use of the Cholesky decomposition is in
the solution of linear systems. Given a symmetric PSD real matrix A, the solution of
the linear system A x = b is computed through the following steps:

1. Cholesky factorization of the source matrix A = LLT

2. Forward substitution to solve the linear system L y = b

3. Backward substitution to solve the linear system LT x = y

Clearly, since in the problem in analysis H and its factorization L are sparse block-
matrices, also b and y are dense block-vector - with the number of blocks N equal to the
number of vertexes in the graph.

Manifold Representation

As it has been already stated at the begin of the Chapter, this work focuses on
3D formulations of pose and pose-landmark graphs. In this Section it will be better
analyzed the representation of all the objects required for the LS estimation in both the
formulations.

3D Pose-Graph

Pose-graph optimization in 3D represents the backbone of SLAM, allowing to estimate
the robot trajectory in space through MAP estimation. In this formulation, the state
x includes the 3D orientation of the nodes which represent the main reason why pose-
SLAM is a complex problem. Rotations in space can be over-parametrized through a 3D
rotation matrix R ∈ SO(3). Therefore, the over-parametrized state can be represented
by a 3D isometry X = WTR ∈ SE(3) which represents the robot pose in the world
reference frame - i.e. a (4× 4) homogeneous transformation matrix.

A possible minimal representation of the state can be a 6 vector x = (tx ty tz αβ γ)T ,
where the triplet r = (αβ γ)T represents the Euler Angles that compose the rotational



5. Solving Factor Graphs with SE3 Variables 35

part of the isometry, while t = (tx ty tz)
T is the translational one. Summarizing, in

formulæ:

X =

(
R t
0T 1

)
x =

[
tx ty tz α β γ

]T
where

R = Rx(α) Ry(β) Rz(γ) (5.4)

The measurements are also of type pose, thus, it is possible to use the same notation
that describes the state. Therefore Zij represents the over-parametrized measurement of
node j with respect to node i - i.e. a 3D isometry iTj .

The next required step concerns the definitions of suitable operators box-plus and
box-minus. We introduce again the operators v2t and t2v that allow to map the over-
parametrized representation into the minimal one and vice versa. Those two operators
allow to define the following relations:

X � ∆x = v2t(∆x) X (5.5)

Xa � Xb = t2v
(
X−1
b Xa

)
(5.6)

For SE(3) object, the v2t function computes the rotational part of X through Equation
5.4 and then composes the isometry adding the translational part t = (tx ty tz)

T . In
Equation 5.4 the factors Rx, Ry and Rz represent the 3D rotation respectively around
the x, y and z axis; they are defined as follows:

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (5.7)

Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (5.8)

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (5.9)

Instead, to retrieve the Euler given the rotation matrix R - that is done in the t2v
operator - it is necessary to equate each element in R with its corresponding element in
the matrix product Rx(α) Ry(β) Rz(γ), in formulæ:
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R =

R00 R01 R02

R10 R11 R12

R20 R21 R22

 = Rx(α) Ry(β) Rz(γ) = (5.10)

=

 cosβ cos γ − cosβ sin γ sinβ
cosα sin γ + sinα cos γ sinβ cosα cos γ − sinα sinβ sin γ − cosβ sinα
sinα sin γ − cosα cos γ sinβ sinα cos γ + cosα sinβ sin γ cosβ cosα


The reader might notice the non-linearities introduced by the functions t2v and v2t.

Those imply the computation of complex non-linear derivatives to retrieve the Jacobian
in the linearization phase. However, this problem - and the solution proposed in this
work - will be better analyzed in the next Section.

3D Pose-Landmark

In this formulation, as already explained in Section 4.3, the system has to estimate
both the robot trajectory and the position of salient world points - i.e. the 3D landmarks.
Therefore, the system’s state and increment are described as follows:

X =

 Nposes

XR
1 , ...,X

R
N |

Mlandmarks

xLN+1, ...,x
L
N+M


∆x =

 Nposes

∆xR1 , ...,∆xRN |
Mlandmarks

∆xLN+1, ...,∆xLN+M


The formalization for SE(3) nodes remains unchanged from the previous Subsection,

therefore, it is necessary to characterize only the nodes that describe the landmarks.

Landmarks’ nodes lie on R3, so it is not necessary to define anything else - i.e. no
box-plus/box-minus operator needed. As a consequence of this, a measurement zij ∈ R3

is a simple 3 vector that describes the position of point j in the i-th pose reference frame.

However, it is necessary to consider also the fact that the sensor’s reference frame
and the robot’s one might not coincide, but they are related through the transformation
S = RTS ∈ SE(3). Thus, given the state, the predicted measurement is:

z̃ij = hij(X) = S−1 X−1
i

K

pj = RKpj + tK (5.11)

In light of this, without loss of generality, the error between the predicted and the actual
measurement is computed as follows:
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eij = z̃ij − zij = S−1X−1
i pj − zij (5.12)

Given Equation 5.12, the perturbed error will be:

eij(Xi � ∆xRi ,xj + ∆xLj ) = S−1
[(

v2t(∆xRi )Xi

)−1 (
pj + ∆xLj

)]
− zij (5.13)

Finally, it is necessary to compute the Jacobian J deriving from the constraint zij ,
that is structured as follows:

J = [0 · · · 0 JR 0 · · · 0 JL 0 · · · 0]

where

JR =
∂ S−1

[(
v2t(∆xRi )Xi

)−1
(
pj + ∆xLj

)
− zj

]
∂∆xRi

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

=

=
∂
[
RT
S

[
v2t(∆xRi )Xi

]−1
pj −RT

StS

]
∂∆xRi

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

=

=
∂RT

SX−1
i

[
v2t(∆xRi )

]−1
pj

∂∆xRi

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

=

=
∂
[
RT
S RT

R

[
v2t(∆xRi )

]−1
pj −RT

R tR

]
∂∆xRi

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

=

=
∂RT

S RT
R

([
v2t(∆xRi )

]−1
pj

)
∂∆xRi

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

= RT
S RT

R

∂
[
R∆xR

i
pj −R∆xR

i
t∆xR

i

]
∂∆xRi

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

Exploiting the fact that the derivative expressed in the previous equation is evaluated in
∆xRi = 0, it leads to the following relation:

JR = RT
S RT

R

[
−I3×3 | −bpjc×

]
(5.14)

The other component of J - namely JL - instead can be computed as follows:
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JL =
∂ S−1

[(
v2t(∆xRi )Xi

)−1
(
pj + ∆xLj

)
− zj

]
∂∆xLj

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

=

=
∂
[
RT
S X−1

i

(
pj + ∆xLj

)
−RT

S tS

]
∂∆xLj

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

=

=
∂
[(

RT
S X−1

i pj
)

+
(
RT
S X−1

i ∆xLj

)]
∂∆xLj

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

= RT
S

∂
[
RT
R ∆xLj −RT

RtR

]
∂∆xLj

∣∣∣∣∣∆xR
i = 0

∆xL
j = 0

This result - expanding the derivatives and exploiting that the linearization point is
∆xLj = 0 - leads to the following relation:

JL = RT
S RT

R (5.15)

The reader might notice that JR is a (3 × 6) matrix - since the minimal representation
of SE(3) states has 6 components - while JL is a (3× 3) matrix - because R3 states are
vectors with only 3 components.

In the next Section it is proposed a deeper analysis on the error representation and
the linearization of 3D pose constraints, highlighting the non-linearity of the computation
and the proposed approach to overcome this issue.

Dealing with SE3 Objects

3D poses are complex objects to manage, due to their rotational part that introduces
many an highly non-linear contribution in the linearization process. In this section
it is proposed an approach that aims to reduce those non-linearities while delivering
performances comparable to other state-of-the-art systems.

Chordal Distance Based Error Function

Recalling 5.2.1, we have defined the functions v2t and t2v that allow to map the min-
imal representation of the state into the redundant one and vice-versa. Through them,
we defined the operators box-plus and box-minus, described respectively in Equations 5.5
and 5.6. Sticking to this notion, the predicted measurement Ẑij of pose j from pose i is
computed as

Ẑij = hij(X) = X−1
i Xj (5.16)
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that leads to the following error function:

eij(X) = Ẑij � Zij = t2v
(
Z−1
ij X−1

i Xj

)
(5.17)

The error eij is a 6 vector that expresses the mismatch of each component of state’s
minimal representation. Proceeding with the error perturbation, the result will be:

eij(Xi � ∆xi,Xj � ∆xj) = t2v
(
Z−1
ij (v2t(∆xi) Xi)

−1 (v2t(∆xj) Xj)
)

(5.18)

The full Jacobian J = [0 · · · 0 Ji 0 · · · 0 Jj 0 · · · 0] will be quite complex to com-
pute due to the derivative of the t2v and v2t functions, requiring also many FLOPs and,
thus, slowing the optimization process. In this formulation Ji and Jj are (6×6) matrices.

It is possible to approach this problem using a different error formulation that leads
to easy-to-compute derivatives. In order to do so, we define the Lp,q norm of a (m× n)
matrix A as follows:

‖A‖p,q =

 n∑
j=1

(
m∑
i=1

|aij |p
)q/p

1/q

For p = q = 2 the becomes

‖A‖F =

 n∑
j=1

(
m∑
i=1

|aij |2
)2/2

1/2

=

√√√√ m∑
i=1

n∑
j=1

|aij |2 (5.19)

that represents the Frobenius norm of a matrix, an entrywise norm, which is also invari-
ant under rotation constraint. Based on this concept, it is possible to define the chordal
distance between two rotation matrix RA and RB as follows:

dchord(RA,RB) = ‖RA −RB‖F (5.20)

It is good to notice that the difference operator employed in Equation 5.20 is the standard
Euclidean minus, executed element-wise.

We define also a new function, that given a 3D isometry returns a 12 vector made
with its components, namely:
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Manifold curvature

Approximated
Line Segment

p1

p2

p̂1

p̂2

Figure 5.2: Chordal Distance. This figure shows the underlying concept of the new error
function: the distance between p1 and p2 can be approximated with the Euclidean distance
computed between the projection of those points onto the relative chord - namely between p̂1

and p̂2.

X =

[
R t
0 1

]
R =

(
r1|r2|r3

)
flatten(X) =


r1

r2

r3

t

 (5.21)

where rk represents the k-th column of R.

Finally, we introduce the following relations to express operators box-plus and box-
minus:

X � ∆x = v2t(∆x) X (5.22)

Xa � Xb = flatten (Xa)− flatten (Xb) (5.23)
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Given those mathematical concepts, it is possible to define the error between two
SE(3) objects through a relaxed version of the chordal distance, that leads to the fol-
lowing relations:

Ẑij = hij(X) = flatten
(
X−1
i Xj

)
(5.24)

eij(X) = Ẑij − Zij = flatten
(
X−1
i Xj

)
− flatten (Zij) (5.25)

It is good to notice that eij now is a 12 vector, therefore, the Jacobian’s components Ji
and Jj will be (12 × 6) matrices. Speaking about this, applying the state perturbation
to the error will lead to the following relation:

eij(Xi � ∆xi,Xj � ∆xj) = flatten
(

(v2t(∆xi)Xi)
−1 (v2t(∆xj)Xj)

)
− flatten (Zij)

(5.26)

It is already possible to notice the reduced complexity of the derivatives required to
linearize the constraint. In fact, from Equation 5.26 it is possible to retrieve the following
relations - stating that R∆xi = Rx

∆xi
Ry

∆xi
Rz

∆xi
:

Jj =
∂ eij(Xi � ∆xi,Xj � ∆xj)

∂∆xj

∣∣∣∣∣∆xi = 0
∆xj = 0

=

=

∂

flatten


G[

RT
i −RT

i ti
0 1

][(
Rx

∆xi
Ry

∆xi
Rz

∆xi

)T
−RT

∆xi
ti

0 1

] [
Rj tj
0 1

]


∂∆xj

∣∣∣∣∣∆xi = 0
∆xj = 0

Expanding the derivatives, it is possible to define the following - intuitively retrieved -
objects:

• R′x0, R′y0 and R′z0 that represent derivatives with respect to ∆α, ∆β and ∆γ of
the base rotation Rk(·), evaluated in 0 and with k = {x, y, z};

• R̂′x0, R̂′y0, and R̂′z0 that are the derivatives with respect to ∆α, ∆β and ∆γ of the

rotational part of matrix G, computed as R̂′k0 = RT
i R′k0 Rj with k = {x, y, z};

• r̂′k0 which describes the 9 vector obtained stacking the columns of R̂′k0 - with
k = {x, y, z}.

In the light of what we just stated, it is possible to retrieve this final formulation of Jj :
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Jj =

(
0(9×3)

[
r̂′x0 | r̂′y0 | r̂′z0

]
(9×3)

RT
i −RT

i btjc×

)
(5.27)

Intuitively, the other component of the Jacobian will be simply

Ji = −Jj (5.28)

The reader might noticed how the new error function reduced the computational cost
of the derivatives, due to the elimination of the highly non-linear function t2v. Moreover,
the use of standard Euclidean minus operator to express differences between transforms,
leads to a better approximation by the first-order Taylor expansion of the perturbed
error. This better approximation enlarges the converge basin of the optimization process
and it improves the avoidance of local minima.

Benefits in the Re-linearization

The reader might remember that, since also the measurements live on a non-Euclidean
space, it is necessary to project the measurement information matrices through the box-
minus operator. Therefore, using the standard box-minus described in Equation 5.6 and
given Ẑij associated to Zij = Zk, it is required to compute the following objects at each
iteration of the LS optimization:

JZk
=
∂
(
Ẑij � Z

)
∂Z

∣∣∣∣
Z=Zk

(5.29)

Ω̃k =
(
JZk

Ωk JTZk

)−1
(5.30)

The error function based on the chordal distance that has been proposed in the pre-
vious Sub-section, brings benefits also in this sense. In fact, since the operator employed
to compute the error is the standard Euclidean minus, it is not required to recompute
the information matrix Ωk at each iteration.

It is good to notice that the information matrix associated with the measurement Zk
is a (6× 6) matrix Ωk , since the state’s minimal representation has dimension 6 in this
formalization. However, it is necessary to consider the contribute of function flatten (·)
in this process: the new error space has dimension 12, thus it is necessary to project
the information matrix into the new higher dimensional space. To this end, it will be
proposed now some new mathematical concepts useful in order to estimate the result of
applying a non-linear transformation to a probability distribution function.

Given a Gaussian distribution p(x) = N (x;µ,Σ) with mean µ and covariance Σ, it
is possible to represent it through a set of weighted points called Sigma Points. Each
Sigma Point χi is described by a set of parameters:
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• a position xi

• a weight for the mean wim ∈ R+

• a weight for the covariance wic ∈ R+

Clearly, the conversion from the original parameters (µ,Σ) to the Sigma Points χi =
(xi, wim, w

i
c) must be invertible. In fact, it is possible to reconstruct the Gaussian param-

eters from the Sigma Points as follows:

µ =
∑
i

wim xi (5.31)

Σ =
∑
i

wic (xi − µ)(xi − µ)T (5.32)

It is good to notice that, if the original Gaussian distribution has dimension n, a
suitable number of Sigma Point required to approximate it without loosing information
will be N = 2n + 1. In order to control how far the Sigma Points are sampled from
the mean µ though, it is possible to tune the scalar parameters κ ∈ R+ and α ∈ (0, 1].
Therefore, the position of each Sigma Point is computed as follows:

x(0) = µ (5.33)

x(i) =

{
µ+ [L]i for i ∈ [1 . . . n]

µ− [L]n−i for i ∈ [n+ 1 . . . 2n]
(5.34)

where L =
√

(n+ λ)Σ and λ = α2(n+κ)−n. Given the scalar parameter β = 2 - tuned
for Gaussian PDFs - the weights are retrieved as follows:

w(0)
m =

λ

λ+ n
(5.35)

w(0)
c = w(0)

m + (1− α2 + β) (5.36)

w(i)
c = w(i)

m =
1

2(n+ λ)
(5.37)

This transformation between actual Gaussian parameters and the Sigma Points is
called Unscented Transform [36]. The core feature of this mathematical function
is that it can be used to apply a transformation to a PDF in a straightforward way.
Sticking to Gaussian PDFs, given Xa ∼ N (xa;µa,Σa) and its Unscented Transform

xa ∼ UT (xa;x
(i)
a , w

(i)
m , w

(i)
c ), computing the Gaussian Xb = g(Xa) can require a lot of

effort. However, a good approximation of Xb can be computed applying the function
g(·) to the Unscented Transformation of Xa. This translates in the application of the
g(·) function to each Sigma Point of xa, namely
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χ
(i)
b = g

(
χ(i)
a

)
i = 1 . . . N (5.38)

Going back to our problem, it is possible to transform the information matrix of
each measurement Ωk through the Unscented Transform. The required steps are the
following:

1. Compute the N = 2n + 1 Sigma Points χ
(i)
original = (x

(i)
original, w

(i)
m , w

(i)
c ) from

N (µk,Σk), where n is the minimal representation’s dimension (in this case n = 6),
µk = t2v(Zk) and Σk = Ω−1

k .

2. Compute the new position of χ
(i)
transformed as x

(i)
transformed = flatten

(
v2t(x

(i)
original)

)
.

3. Reconstruct the new Gaussian N (µ̄k, Σ̄k) from the Sigma Points χ
(i)
transformed, leav-

ing the parameters w
(i)
m and w

(i)
c unchanged.

The adapted information matrix Ω̄k = Σ̄−1
k is a (12× 12) matrix. However, since we

are mapping a 6-dimensional space in a 12-dimensional space with only N = 2n+1 = 13
Sigma Points, it is possible to retrieve covariance matrix subject to (multiple) rank-loss.
Therefore, it is necessary to add a non-zero scalar ε to the main diagonal of Σ̄k, in order
to avoid numerical issues during its inversion.

Thanks to the Unscented Transform it is possible to have a fast and quite accurate
approximation of the adapted information matrix, leading to consistent results from the
optimization process. Moreover, since the minus operator employed in this formulation
is the standard Euclidean one, the computation is performed just one time for each
measurement Zk, reducing the computational effort of each optimization step.

Convergence Results

In the previous Sections, it has been proposed to the reader a complete overview of
the theory underlying our optimization system. This Section, instead, proposes some
tangible results brought by the novel approach described in this work.

To test the convergence of the system, we took two reference pose-graphs and we
add to them different kind of noises in order to create multiple initial guess for the
optimization algorithm. The graphs used are:

1. Synthetic world: that has 501 vertices and 4277 measurements (easier);

2. Synthetic sphere: 2500 vertexes and 9799 edges (hard).

Figure 5.3 shows the two graphs solved. Here we propose the comparison between our
system and the state-of-the-art optimizer g2o [1].
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(A)

(B)

Figure 5.3: Solved Graphs Top image: the synthetic world graph solved. Bottom: synthetic
sphere solved.

The first test done consisted in applying the noise only on the translational part of
the nodes; the employed graph is the synthetic world - Figure 5.3A. Obviously, both the
system preformed well recreating the original graph, as shown in Figure 5.4.

However, our system claims to be more effective to manipulate rotations. Conse-
quently, the second test focused on this: the initial guess, in fact, was created from
the synthetic world graph adding white noise - i.e. sampled from N (0, 1) - only to the
rotation R of each node.

With this initial guess, g2o suffers from the non-linearities introduced by the v2t and
t2v functions as the reader might notice in Figure 5.5A. To confirm the qualitative result
obtained, we decided to compare g2o’s chi2 with the one obtained with our approach,
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Figure 5.4: Translational Noise. From left to right: initial guess, g2o solution, our solution.
Both the approaches generate consistent results.
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Figure 5.5: Rotational Noise. Figure (A) from left to right: initial guess, g2o solution, our
solution. Figure (B) shows the chi2 of both approaches at each iteration: it is clear the conver-
gence gap between g2o - in blue - and our approach - in orange. The y axis’ scale is logarithmic.
The iterations performed are 10, therefore, the point x = 1 indicates the chi2 of the initial guess.

iteration by iteration. In order to obtain comparable objects - and to not bias the
comparison - it has been saved the graph obtained with our system at each iteration and
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evaluated its initial chi2 in g2o. The result of this comparison is shown in figure 5.5B.

In order to further confirm the quality of the chosen approach, is has been gen-
erated another initial guess for the same graph, but the noise figure was sampled from
N (0, 1000). In this case both the systems struggle to find a solution in only 10 iterations,
but the trend is better with our error function - see Figure 5.6.
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Figure 5.6: Advanced Rotational Noise. Figure (A) from left to right: initial guess, g2o

solution, our solution. Figure (B) shows the chi2 of both approaches at each iteration. g2o’s
trend might indicate that the system got stuck in a local minimum.

The next step consists in applying both noise figures to the sphere graph, together
with a translational perturbation (therefore a 6 DoF noise vector), generating a very
harsh initial guess.

Given the complexity of the initial guess, we decided to perform more iterations with
respect the previous graph - i.e. 100. Figure 5.7 shows the qualitative and quantitative
results of both g2o and our approach, after applying 6 DoF Gaussian noise - sampled from
N (0, 1). The reader might appreciate the fact that g2o converges to a local minimum
far from the optimum, instead, our approach is able to reach the optimum in less
than 40 iterations.

Finally, in the last test it has been increased the rotational component of the noise,
which, in this extreme case, is sampled from N (0, 1). Here, without a kernel both the
systems struggles to optimize the graph.

Figure 5.8 shows the outcomes of both the systems: clearly neither g2o nor our
system reached the optimum, however the solution retrieved with the proposed method
is evidently more consistent.

In Subsection 5.3.2, it has been highlighted that converting the information matri-
ces from a 6-dimensional space to a 12-dimensional one through the Unscented Trans-
form may generate multiple rank loss, thus, the matrix Σ̄k = Ω̄−1

k must be conditioned
somehow to avoid singularities. Given this, it has been tested the effects of different
conditioning methods, however the most promising ones where basically 3:

1. Soft Conditioning. It is computed the Singular Value Decomposition of matrix
Σ̄k = UDV ?, then it is added a non-zero value ε only to the degenerated eigenvalues
and finally it is computed the matrix Σ̄conditioned

k = UD̃V ?.
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Figure 5.7: Sphere 6 DoF Noise. Figure (A) from left to right: initial guess, g2o solution,
our solution. Figure (B) shows the chi2 of both approaches at each iteration. From the plot it
is clear that g2o converges to a local minimum distant from the optimum. Here our approach
instead is able to converge to the proper solution in less than 40 iterations.
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Figure 5.8: Advanced Rotational Noise. Figure (A) from left to right: initial guess, g2o

solution, our solution. Figure (B) shows the chi2 of both approaches at each iteration. Even if
both systems fail in reaching the optimum, our system is able to generate a fair solution that can
be further refined to reach the proper convergence.

2. Mid Conditioning. This is the method actually used to obtain the results seen
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until now, and consists in applying a non-zero value ε to all the elements on the
diagonal of Σ̄k. Reasonable values are ε ∈ [10−2, 10−4].

3. Hard Conditioning. In this case, all the values outside the main diagonal are
simply ignored - i.e. set to zero.

Figure 5.9: Conditioning Methods. The outcomes of the three conditioning methods used to
compute the measurements’ information matrix. Given the initial guess relative to Figure 5.7A,
from left to right are illustrated: soft, mid and hard conditioning.

This comparison opens a new path for further investigations, in order to retrieve the
best conditioning method to compute the measurements’ information matrices.

As this Section showed, the novel features introduced so far lead to an accurate and
more robust optimizer, that delivers results comparable or better to other state-of-
the-art systems. In the next Chapter, the reader will have an insight on the actual
implementation of the system, in order to better understand how all those mathematical
concepts have been applied in practice and to show the speed performances reached by
our system.



Chapter 6

Software Implementation of the
Optimizer

This Chapter will better analyze the actual implementation of a 3D Optimizer. In
particular, it has been developed a self-consistent C++ library that provides all the tools
needed to create and optimize 3D graphs that contain pose or point objects. The main
components of the system are basically two:

1. The Optimizer itself that runs the Gauss-Newton algorithm to retrieve the best
state configuration given the constraints.

2. The Graph, that contains the actual nodes and edges generated by a suitable front-
end or read from file.

While the Graph is just a container for nodes and edges, the optimizer has to perform
several computations in order to retrieve the linear system H∆x = −b and then solve
it. Therefore, underlying the optimizer a linear solver is required to efficiently solve the
aforementioned system.

Once that the front-end populates the graph (or it is loaded from a file), it is fed as
input of the optimizer; the general work-flow of a graph optimizer is the following:

1. Linearization: for each edge it is computed the error with respect to the current
system state and then the relative Jacobian. The output of this phase is the
contribution of the edge to the Hessian matrix and the right-hand-side vector.

2. Permutation: once that the Hessian H is built, it is necessary to compute a proper
permutation to reduce Cholesky factorization’s fill-in and apply it to Hessian and
the right-hand-side vector.

3. Linear Solver: now it is possible to compute the actual Cholesky factorization L
and retrieve ∆x via Forward/Backward Substitution.

4. Update: finally, once that ∆x is computed, it is possible to apply it to the current
system state - i.e. to all the graph’s Vertex.
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It is good to notice that our system is almost completely self-contained: the only
external libraries employed are Eigen [37] - to efficiently manage small matrices - and
SuiteSparse [38] - in order to compute the right permutation of the Hessian. Furthermore,
the library has been developed with simplicity and keeping a minimalistic approach, in
order to be comprehensible also by researchers that are not expert in this field. Just for
comparison, the entire library has less than 6 thousand lines of code; other state-of-the-
art systems are deployed in huge libraries with thousands of lines of code - e.g. g2o [1] is
over 40 thousands lines of code, Ceres [39] is over 90 thousands lines of code and gtsam

[19] over 300 thousands lines of code.

Graph

The Graph is basically constituted by a collection of edges and nodes. The nodes can
be either of type pose or point - represented respectively by the objects VertexSE3 and
VertexR3. Each vertex is represented by

• Its estimate, which can be a 3D isometry or a 3D position - namely a Pose3D or
a Point3D;

• A unique index that is used to recognize the vertex;

• A boolean variable that indicates whether the node is fixed or not. A fixed Vertex
must not be involved in the optimization process. It is good to notice that at least
one fixed vertex must exists in the graph, otherwise the optimization problem is
undefined.

Analogously, the edge are of type pose-pose or pose-point - represented respectively
by the objects EdgeSE3 and EdgeSE3 R3. The edge have several fields, namely:

• The actual measurement that can be either a Pose3D or a Point3D;

• The data association that consists in a pair of Vertex which represents the nodes
involved in the edge;

• The information matrix related to the measurement - namely a Matrix6 or a
Matrix3.

Once that the front-end populates the graph, it is fed into the Optimizer to perform
MAP estimation of the best state configuration given the constraints.

The Optimizer

The Optimizer represents systems’ heart: it takes as input the graph, retrieves the
linear system H∆x = −b, solves for ∆x and finally updates the graph. In the following
Subsections the core elements of the Optimizer will be better investigated.
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Linearization and Hessian Composition

One of Optimizer’s tasks is to compute the contribution that each edge brings to
both the Hessian matrix H and the right-hand-side vector b. Those contribution are
retrieved during the linearization of the graph.

Each edge of the graph is analyzed, whether it is a EdgeSE3 or a EdgeSE3 R3. For
each measurement the block matrices Hii, Hij , Hji and Hjj are computed as

Hii = JTi ΩkJi Hjj = JTj ΩkJj
Hij = JTi ΩkJj Hji = JTj ΩkJi

(6.1)

while the right-hand-side contributions are computed as

bi = JTi Ωkek bj = JTj Ωkek (6.2)

The subscript indexes 〈i, j〉 are the node unique indexes in the current edge’s data-
association. The tuple 〈i, j〉 indicates the position of each block in the full Hessian H
(and in the full right-hand-side vector b).

The Jacobians Ji and Jj are using Equations 5.28 and 5.27 for pose constraints,
while for point ones Equations 5.14 and 5.15. Clearly, as reported in Section 5.3, the
information matrix of each EdgeSE3 is adapted through the Unscented Transform before
starting the optimization process - and not at each iteration.

Sparse Linear Solver

The linear solver employed is based on Cholesky decomposition of the Hessian - i.e.
Subsection 5.1.2. Clearly, the first thing needed in order to efficiently solve a sparse
linear system is a proper matrix data-structure.

In this work, sparse matrices are represented through the SparseBlockMatrix ob-
ject, which uses as storage method the List of Lists (LIL) approach. It is possible to
select between fixed-size blocks - i.e. in pose graph optimization - and dynamic blocks -
i.e. in pose-landmark graph optimization. In the former case it is possible to take advan-
tage of CPU cache while doing matrix operations and, thus, boosting the computation;
using dynamic blocks matrix operations are slower but it adds flexibility to the system.
SparseBlockMatrix main feature is the fact that object’s memory - used to actually
store the blocks - can be isolated from the objects itself. Therefore, the actual matrix
is just a view of those blocks, intended as a LIL of pointers to those memory blocks.
This formulation allows to manipulate the SparseBlockMatrix without touching the
memory, just rearranging matrix’s view. The object DenseBlockVector is designed on
the basis of this and it used to store dense vectors like the right-hand-side vector b and
the update vector ∆x.

Before computing the Cholesky factorization, Hessian’s non-zero pattern is analyzed
through the SuiteSparse library in order to retrieve a suitable ordering that reduces



6. Software Implementation of the Optimizer 53

Cholesky’s fill-in. The user can choose between different algorithms - i.e. AMD, CO-
LAMD, CHOLMOD - or let the system retrieve the best one.

Once the permutation is found, SparseBlockMatrix’s view of matrix H is rearranged
based on the permutation, together with the DenseBlockVector b. Now it is possible to
compute the Cholesky factorization and retrieve the matrices L and LT . Finally, through
Forward-Backward Substitution, the update vector ∆x is found.

It is good to notice that before solving the linear system, it is necessary to remove
fixed vertexes’ contribution from the system. Supposing that node f is fixed, then it is
necessary to remove the f -th row and column from the Hessian, together with the f -th
block of the b. Therefore the system we solve has dimension n− F , where F represents
the number of fixed vertexes.

Graph Update

Once that the DenseBlockVector ∆x is computed, it is necessary to apply to each
node k the relative block ∆xk of the update vector.

The update is applied node by node through the box-plus operator described in
Equations 5.22 for SE(3) nodes and the Euclidean minus for R3 ones. Clearly, fixed
nodes will remain unchanged.

Bottlenecks

The system has been designed to deliver real-time performances, therefore, an ad-hoc
implementation is required to achieve such result. The system described in the previous
Section has two main time-consuming operations, both performed at each iteration:

1. Allocation and management of the memory for the Hessian’s blocks;

2. The actual computation of the Hessian’s blocks described in Equation 6.1.

However, the proposed system tackles both the issue, reducing the time required for
each iteration to values comparable to state-of-the-art systems.

Memory management

Allocate the memory blocks for the Hessian H is a time-expensive operation. Fur-
thermore, it is required to allocate memory also for its decomposition L and LT and for
the dense vector b, ∆x and y. Moreover, copying memory - for example to create a
permutation of a matrix - is another time and resource consuming operation.

The memory copy has been addressed through the separation of matrix view and
memory in the SparseBlockMatrix object, as mentioned before. In this way it is possible
to create multiple views of a matrix that share the same physical memory, avoiding
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memory copy and, thus, reducing the memory consumption of the system. The same
feature is found in the DenseBlockVector object. The physical memory is managed by
a separated object called MemoryManager. It is in charge of allocating, delete and copy
memory for matrix and vectors.

However, even if we are able to avoid memory copy, it is necessary to allocate the
matrices and vectors at each iteration. Once again, this process is avoided through a
clever solution: once the graph is built, it is possible to exploit its structure to evaluate
the non-zero pattern of the Hessian H. The reader might notice that the non-zero pattern
will remain unchanged for the entire optimization process, while the numeric values of
the block will change at each iteration. Moreover, all the DenseBlockVectors will have a
fixed dimension equal to the number of active vertexes n−F . Therefore, it is possible to
allocate all the memory required to store Hessian’s and vectors’ block only once before
starting the optimization process.

Once that we have the Hessian’s non-zero pattern, it is possible to compute both
the permutation and the Cholesky symbolic decomposition, that retrieves the non-zero
pattern of matrix L (and thus also LT ). In this way, during the optimization steps there
is no memory allocation or copy, speeding up the entire system.

Hessian blocks computation

Using the Eigen library to perform matrix operations, it is possible to appreciate a
bottleneck in the computation of the product Hij = JTi ΩkJj - and all the other blocks
Hii, Hjj and Hji. The slowing down is particularly emphasized for (6 × 6) static or
dynamic blocks.

However, for pose-pose constraints, given the product A = JTi ΩkJi, the following
relations hold:

Hii = A Hjj = A

Hij = −A Hji = −A

In this way the computation is performed just one time, thus there is a 75% boost in
terms of speed. Furthermore, since A is a symmetric matrix, it is possible to compute
just the upper triangular part and then replicate it in the lower triangular, reducing even
more the computational time.

Performance Results

The library developed has been tested on different synthetic datasets both in pose-
graph and pose-landmark scenarios. All the test have been performed on a Lenovo
ThinkPad W540 laptop equipped with:

• CPU: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz
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• RAM: 2× 4GB + 2× 8GB SODIMM DDR3 - total 24GB

• Disk: SanDisk(R) Ultra II(TM) 240GB Solid State Drive

• OS: Ubuntu 16.04 LTS

Since the works focuses on pose-graph optimization, the results will be mostly related
to this kind of problem. In this case the blocks composing the Hessian have fixed size -
i.e. (6 × 6) - and, therefore, it is possible to employ a SparseBlockMatrix with static
fix-sized blocks.

The experiments proposed are obtained using three different datasets that have an
increasing number of edges:

1. The open-loop graph created by ProSLAM stud from the Kitti 00 run (further
information in Chapter 7), with 752 nodes and 903 edges (easy);

2. A synthetic sphere with 2500 vertexes and 9799 edges (medium);

3. A synthetic dataset wit 2001 poses and 24422 edges (hard).

Figure 6.1 shows the step-time’s evolution of both systems during the optimization
of the three datasets. Furthermore, in Table 6.1 are reported the total optimization time
employed by both systems to execute 10 steps.
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Figure 6.1: Pose Graph Optimization Step Time Comparison. Comparison between g2o

- in blue - and our system - in orange - of the time required to execute an optimization step.
Despite the minimalistic implementation, our approach is significantly faster than g2o; the gap
increases with the number of edges, indicating a slightly better scalability of the proposed system
with respect to g2o.
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The reader might notice how well our systems behaves, delivering performances that
are better or at least comparable with the one obtained through a state-of-the-art com-
plex system like g2o. Furthermore, the results show that an increased number of edges
corresponds to a bigger gap between our approach and g2o, indicating that our imple-
mentation is very efficient and slightly more scalable.

Total Optimization Time

System easy [s] medium [s] hard [s]

g2o 0.0349 6.0319 24.0242
our 0.0588 4.7000 15.6795

Table 6.1: Pose Graph Optimization Total Time Comparison. In this table are reported
the total optimization time required by the two systems to complete 10 iterations. The reader
might notice that in graphs with more edges, our approach performs better than g2o.

For pose-landmark graphs, our systems struggles to obtain the same results seen
in pose-graph optimization. This is mainly due to use of a SparseBlockMatrix with
dynamic blocks, that makes our implementation slower than its competitor g2o, as it is
reported in Figure 6.2 and Table 6.2.
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Figure 6.2: BA Optimization Step Time Comparison. Comparison between g2o - in blue
- and our system - in orange - of the time required to execute an optimization step. In this case
g2o leads always the comparison.

The results are obtained running the two systems on two datasets that have an
increasing number of nodes and edges. In particular:

1. A synthetic dataset with 9472 vertexes (1001 SE3 + 8471 R3) and 25537 edges
(6013 SE3 + 19524 SE3 R3) - called small ;
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2. A bigger synthetic dataset that has 31796 vertexes (2001 SE3 + 29795 R3) and
117375 edges (25327 SE3 + 92048 SE3 R3) - called big.

Total Optimization Time

System small [s] big [s]

g2o 1.8242 9.2920
our 3.8641 42.3554

Table 6.2: BA Optimization Total Time Comparison. In this table are reported the total
optimization time required by the two systems to complete 10 iterations. The reader might notice
an inverted trend with respect to pure pose-graph optimization, with our system struggling when
the number of edges increases.

One possible solution to this bad trend can be the use of static blocks also for BA
problems, solving the linear system H∆x = −b using the Schur Complement.



Chapter 7

Use Cases

As already mentioned, the system developed aims to deliver real-time performances
also when used in real-world applications. Furthermore, the system provides some easy-
to-embed APIs in order to be easily integrated in a full SLAM pipeline. Therefore, in this
Chapter we provide two front-end systems developed in the Ro.Co.Co.Lab. at Sapienza
University that actually use this work as their back-end. In both cases, our system is
used to perform 3D pose-graph optimization.

ProSLAM

The work of Schlegel et al. [40] presents a stereo-visual system capable of mapping
dynamic large-scale environments called ProSLAM. The system is designed with sim-
plicity and modularity in mind and, thus, it is easy to implement and to understand also
from people who are not Computer Vision or SLAM experts.

This works is also almost entirely self-contained and employs only a minimal set of
external libraries - among which there is the library described in this work.

ProSLAM, despite its simplicity, is able to provide results comparable to other more
complex state-of-the-art front-ends. Its goal is to generate a 3D map from the processing
of a sequence of stereo-images. The map is intended as a collection of landmarks - salient
3D points in the world characterized in its appearances by a unique descriptor - together
with the camera trajectory.

Landmarks acquired in a nearby region define a local map; each local map constitutes
a node of the graph - i.e. a SE(3) transformation matrix. Edges between local maps
encode the spatial constraints correlating local maps close in space. Those constraints
are generated by two kind of events:

1. Tracking of the camera motion between temporal subsequent maps;

2. Alignment of local maps acquired at distant times as a consequence of relocaliza-
tion events - i.e. loop-closures.

Re-localization is more complex to address with respect to tracking. In fact, to
achieve this goal it is necessary to compare descriptors of all the local-maps. This is an
expensive operation, and it is efficiently performed by the Hamming Binary Search Tree
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(HBST) [41] library. The system periodically triggers graph optimization and this helps
also the re-localization process.

It is good to notice that ProSLAM runs on single thread, delivering performances
comparable with other more complex and multi-thread systems - e.g. ORB-SLAM2 [42].

ProSLAM stud

Colosi et al. propose in their work ProSLAM stud [43] a further iteration on mini-
malism from original ProSLAM. It is a Master thesis work, therefore its approach is more
didactic than the original one. However, the system still delivers quite good performances
both in terms of speed and accuracy.

This systems embeds a new tracking method based on KD-Tree that is able to provide
a boost in speed with respect to ProSLAM, at the cost of little loss in accuracy.

ProSLAM stud keeps the single-treaded implementation and despite the minimal
approach, it can push up to more than 80Hz - on average.

KITTI Dataset

Both ProSLAM and ProSLAM stud have been tested on two sequences of the KITTI
dataset [44]. All the 22 available sequences, have been acquired using a car equipped
with several sensors - e.g. stereo-cameras, Velodyne laser scanner and localization system
that combines data from GPS, GLONASS and IMU - all calibrated and synchronized.

Figure 7.1: KIT AnnieWAY acquisition method. The KITTI dataset is acquired using an
autonomous driving car, equipped with several sensor: a stereo-rig of high resolution cameras,
Velodyne 3D laser scanner and a localization unit based on GPS/GLONASS/IMU.

Clearly, the selected sequences are the ones with most loop-closures, in order to
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highlight the benefits of the optimization process. Figure 7.2 proposes a qualitative
comparison of the performances using ProSLAM in sequences 00 and 06 respectively.

Figure 7.2: ProSLAM results. Starting from the top image it is proposed a comparison between
the estimated and the real camera trajectory of sequence 00 - respectively in blue and in red.
Proceeding from left to right it is proposed the estimation with no map optimization, using g2o

and using our approach as optimizer. In the bottom image it is shown the same comparison but
using sequence 06.

The reader might already notice that the estimated trajectory is more consistent using a
back-end that performs graph optimization; the figure also show how well our approach
performs the optimization compared with another state-of-the-art system - i.e. g2o [1].

ProSLAM Trajectory Error Evaluation

Config Sequence 00 Sequence 06
Rotation [ deg/100m] Translation [%] Rotation [ deg/100m] Translation [%]

OL 0.397155 1.117624 0.393365 0.861104
g2o 0.301858 0.731966 0.224632 0.733721
our 0.272738 0.723581 0.219253 0.664294

Table 7.1: ProSLAM Trajectory Error. In this Table are reported the translation and
rotation error of the final trajectory on both sequences. The contribution of a map optimizer
is undeniable, however, the reader might appreciate the results obtained with our minimalistic
approach, which are not far from the one obtained using the state-of-the-art system g2o.

Furthermore, in Table 7.1 are proposed quantitative results about the final trajectory’s



7. Use Cases 61

error for each map optimizer used: the reader might appreciate the closeness of our
approach with the g2o.

The same considerations can be made also using ProSLAM stud system, as depicted
in Figure 7.3 and in Table 7.2.

Figure 7.3: ProSLAM stud results. The top image proposes the estimated and real camera
trajectory of sequence 00 - respectively in blue and in red. Again it is proposed the comparison
between open-loop estimation, g2o and our approach. In the bottom image it is shown the same
comparison but using sequence 06.

ProSLAM stud Trajectory Error Evaluation

Config Sequence 00 Sequence 06
Rotation [ deg/100m] Translation [%] Rotation [ deg/100m] Translation [%]

OL 0.615349 1.285283 0.745911 1.036123
g2o 0.452409 0.941609 0.259771 0.785845
our 0.357097 0.850793 0.272893 0.794151

Table 7.2: ProSLAM stud Trajectory Error. In this Table are reported the translation and
rotation error of the final trajectory on both sequences. Even in this case, our approach delivers
consistent results.

From this quantitative and qualitative analysis it is clear the contribution of a good
back-end in the SLAM pipeline. Furthermore, they highlighted the quality reached by
our system in real-world scenarios, delivering fast and accurate estimation despite it
simplicity and minimalism.



Chapter 8

Conclusions

In this Master’s thesis, it has been reached the goal of creating from scratch a graph
optimizer able to cope with the principal 3D SLAM problems in real-time - namely pose
and pose-landmark graph optimization.

The system, as mentioned in Chapter 6, delivers quite good performances despite
its minimal and didactic approach, combining simplicity and effectiveness. It is entirely
developed in C++ in less than 5500 lines of code and employs only essential external
libraries. This makes our work comprehensible also by researchers that approach to this
problem for the first time and are not SLAM experts.

The system performs well thanks to a novel approach to manage SE(3) objects - i.e.
3D poses in the space - and an efficient C++ implementation. The former consists in a
new error function for SE(3) objects that reduces the non-linearities of the problem,
reducing also the computing time and facilitating system’s convergence. The latter con-
cerns a well designed memory management, letting the system perform the optimization
steps with 0 memory copy. Thanks to this, the system proposed in this work scales
well also to big graphs with thousands of poses and points.

Applications

The system can be employed both for on-line and off-line applications, for example:

• Together with a front-end in a full SLAM pipeline, as mentioned in Chapter 7.
In fact, thanks to its fast implementation, it can be embedded on actual mobile
robots - no matter if they are on wheels, UAVs or humanoids.

• As a matter of fact, many LS algorithms fail or get stuck in local minima when
the initial guess is far from the the optimum. Therefore, our system can bootstrap
those algorithm providing a better initial guess in order to further optimize the
graph using fine-grain LS algorithms.

• It can be embedded in the map itself, in order to keep always consistent the world
representation.

The generality, the ability to adapt to different scenarios and the easy-to-embed provided
APIs make our system a good choice in several scenarios. Clearly it is not the perfect
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system and, thus, in the next Section it is proposed a set of future works related to our
system.

Future Works

The reader might know that the time available to complete a Master’s thesis is limited,
and this biased a lot project development. Many compromises have been made and a lot
of aspects are not addressed. In this Section it is proposed an insight of what might be
the future iterations of this work.

Expand the Addressed Problems

Until now, our system only deals with 3D pose or 3D pose-landmark graph optimiza-
tion. All state-of-the-art systems provide APIs to address a many of the typical problems
mentioned in Chapter 4, both in 3D and 2D environments.

Therefore, a good starting point might be the extension of the problems addressed
by our current system to 2D scenarios. Then, once that core SLAM problems have been
successfully addressed, all the other formulations could be added.

Hierarchical Approach

Hierarchical approaches represents the most interesting evolution of graph-based
SLAM formulation. This formulation allows to create multiple graph’s views, each of
which has a different granularity: the bottom level represents the original input, while
higher levels capture the structural properties of the environment in a always more com-
pact manner. This approach is similar to what has been proposed in the work of Grisetti
et al. [2].

This hierarchical formulation of the problem allows to update only the coarse struc-
ture of the scene during online mapping - i.e. only the highest level. When a substantial
change happens in the top level, the update is propagated through the other lower levels,
reducing the computational effort while providing an accurate estimate.
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[35] Kümmerle, R., Grisetti, G., Burgard, W.: Simultaneous calibration, localization,
and mapping. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Inter-
national Conference on, IEEE (2011) 3716–3721

[36] Julier, S.J.: The scaled unscented transformation. In: American Control Conference,
2002. Proceedings of the 2002. Volume 6., IEEE (2002) 4555–4559

[37] : Eigen template libray for linear algebra. http://eigen.tuxfamily.org/index.

php?title=Main_Page

[38] : Suitesparse. http://faculty.cse.tamu.edu/davis/suitesparse.html

[39] Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org

[40] Schlegel, D., Colosi, M., Grisetti, G.: Proslam: Graph slam from a programmer’s
perspective. arXiv preprint arXiv:1709.04377 (2017)

[41] Schlegel, D., Grisetti, G.: Visual localization and loop closing using decision trees
and binary features. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, IEEE (2016) 4616–4623

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://ceres-solver.org


Bibliography 67

[42] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocu-
lar, stereo, and rgb-d cameras. IEEE Transactions on Robotics (2017)

[43] Colosi, M., Schlegel, D., Grisetti, G.: Proslam student edition: a minimalistic stereo
visual slam system. Master’s thesis, Sapienza University of Rome (2017)

[44] Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, IEEE (2012) 3354–3361


	Abstract
	Nomenclature
	1 Introduction
	2 Related Work
	2.1 Dense Approaches
	2.2 Olson's Gradient Descent
	2.3 Smoothing and Mapping
	2.4 TORO
	2.5 G2O
	2.6 GT-SAM
	2.7 HOG-Man
	2.8 Tectonic-SAM
	2.9 Condensed Measurements

	3 Basics
	3.1 Least Square SLAM
	3.1.1 Direct Minimization

	3.2 Manifolds
	3.3 Sparse Least Squares
	3.4 Factor Graphs

	4 Typical Problems
	4.1 Pose Graphs
	4.2 Pose-Landmark Graphs
	4.3 Pose and Landmark Estimation
	4.3.1 Pose-Pose Constraints
	4.3.2 Pose-Point Constraints

	4.4 Bundle Adjustment
	4.5 Simultaneous Calibration Localization and Mapping

	5 Solving Factor Graphs with SE3 Variables
	5.1 Exploit Sparsity
	5.1.1 Storage Methods for Sparse Matrices
	5.1.2 Cholesky Decomposition

	5.2 Manifold Representation
	5.2.1 3D Pose-Graph
	5.2.2 3D Pose-Landmark

	5.3 Dealing with SE3 Objects
	5.3.1 Chordal Distance Based Error Function
	5.3.2 Benefits in the Re-linearization

	5.4 Convergence Results

	6 Software Implementation of the Optimizer
	6.1 Graph
	6.2 The Optimizer
	6.2.1 Linearization and Hessian Composition
	6.2.2 Sparse Linear Solver
	6.2.3 Graph Update

	6.3 Bottlenecks
	6.3.1 Memory management
	6.3.2 Hessian blocks computation

	6.4 Performance Results

	7 Use Cases
	7.1 ProSLAM
	7.2 ProSLAM_stud
	7.3 KITTI Dataset

	8 Conclusions
	8.1 Applications
	8.2 Future Works
	8.2.1 Expand the Addressed Problems
	8.2.2 Hierarchical Approach


	Bibliography

