Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization

Supplementary Material
This document is part of a paper that has been published on the IEEE Robotics and Automation Letters (RA-L). Please cite this work as:

```
@article{aloise2019systematic,
    author={I. {Aloise} and B. D. {Corte} and F. {Nardi} and G. {Grisetti}},
    journal={IEEE Robotics and Automation Letters},
    title={Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization},
    year={2019},
    volume={4},
    number={3},
    pages={2738-2745}
}
```


Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization

Supplementary Material

Irvin Aloise, Bartolomeo Della Corte, Federico Nardi and Giorgio Grisetti Department of Computer, Control and Management Engineering
Sapienza University of Rome
Email: \{ialoise, dellacorte,fnardi,grisetti\}@diag.uniroma1.it

Jacobians' Computation

In this additional materials, we provide the mathematical derivation of the Jacobians shown in the manuscript. In the remaining we indicate with $\mathbf{Z}_{i j}$ the factor directed from pose $\mathbf{X}_{i}=\left[\mathbf{R}_{i} \mid \mathbf{t}_{i}\right]$ to matchable \mathbf{M}_{j}. In this scenario, $\boldsymbol{\Delta} \mathbf{X}_{i} \in \mathbb{R}^{6}$ and $\boldsymbol{\Delta} \mathbf{X}_{j} \in \mathbb{R}^{5}$ will refer respectively to a pose and a matchable perturbation. We refer the reader to Sec. III and Sec. IV of the manuscript for details on the aforementioned objects.

Given this, the complete Jacobian deriving from factor $\mathbf{Z}_{i j}$ will be computed as follows:

$$
\begin{aligned}
\frac{\partial \mathbf{e}_{i j}(\mathbf{X} \boxplus \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} & =\frac{\partial \mathbf{e}_{i j}\left(\mathbf{X}_{i} \boxplus \Delta \mathbf{x}_{i}, \mathbf{M}_{j} \boxplus \Delta \mathbf{x}_{j}\right)}{\partial \Delta \mathbf{x}} \\
& =\left(\begin{array}{llllllllllllll}
\mathbf{0}_{7 \times 6} & \cdots & \mathbf{0}_{7 \times 6} & \mathbf{J}_{i} & \mathbf{0}_{7 \times 6} & \cdots & \mathbf{0}_{7 \times 6} & \mathbf{0}_{7 \times 5} & \cdots & \mathbf{0}_{7 \times 5} & \mathbf{J}_{j} & \mathbf{0}_{7 \times 5} & \cdots & \mathbf{0}_{7 \times 5}
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{align*}
\mathbf{J}_{i} & =\frac{\partial \mathbf{e}_{i j}\left(\mathbf{X}_{i} \boxplus \Delta \mathbf{x}_{i}, \mathbf{M}_{j}\right)}{\partial \Delta \mathbf{x}_{i}} \tag{1}\\
\mathbf{J}_{j} & =\frac{\partial \mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{M}_{j} \boxplus \boldsymbol{\Delta} \mathbf{x}_{j}\right)}{\partial \boldsymbol{\Delta} \mathbf{x}_{j}} \tag{2}
\end{align*}
$$

Recalling Eq. (13) of the manuscript, we defined the error between predicted and actual measurement $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{M}_{j}\right)=$ $\hat{\mathbf{Z}}_{i j}-\mathbf{Z}_{i j}$ as

$$
\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{M}_{j}\right)=\left(\begin{array}{l}
\mathbf{e}_{\mathbf{p}} \tag{3}\\
\mathbf{e}_{\mathbf{d}} \\
\mathbf{e}_{o}
\end{array}\right)
$$

where $\mathbf{e}_{\mathbf{p}}, \mathbf{e}_{\mathbf{d}}$ and \mathbf{e}_{o} indicate the errors respectively between the origins, the directions and the orthogonality. Finally, we will use the following notation for the predicted and actual measurement:

$$
\begin{aligned}
\mathbf{Z}_{i j} & =\left\langle\mathbf{p}_{i j}, \mathbf{R}_{i j}, \boldsymbol{\Lambda}_{i j}\right\rangle \\
\hat{\mathbf{Z}}_{i j} & =\left\langle\hat{\mathbf{p}}_{i j}, \hat{\mathbf{R}}_{i j}, \hat{\boldsymbol{\Lambda}}_{i j}\right\rangle
\end{aligned}
$$

Indicating with \mathbf{u}_{x} the unit vector $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}$, the Jacobian \mathbf{J}_{i} in Eq. (1) is computed as

$$
\mathbf{J}_{i}=\left(\begin{array}{c}
\frac{\partial \mathbf{e}_{\mathbf{p}}}{\partial \Delta \mathbf{x}_{i}} \tag{4}\\
\frac{\partial \mathbf{e}_{\mathbf{d}}}{\partial \Delta \mathbf{x}_{i}} \\
\frac{\partial \mathbf{e}_{o}}{\partial \boldsymbol{\Delta} \mathbf{x}_{i}}
\end{array}\right)
$$

where

$$
\begin{aligned}
\frac{\partial \mathbf{e}_{\mathbf{p}}}{\partial \boldsymbol{\Delta} \mathbf{x}_{i}} & =\left(\begin{array}{ll}
\hat{\mathbf{R}}_{i j}^{\top} & -\hat{\mathbf{R}}_{i j}^{\top}\left\lfloor\mathbf{R}_{i} \mathbf{p}_{i j}+\mathbf{t}_{i}\right\rfloor_{\times}
\end{array}\right) \\
\frac{\partial \mathbf{e}_{\mathbf{d}}}{\partial \boldsymbol{\Delta} \mathbf{x}_{i}} & =\left(\begin{array}{ll}
\mathbf{0}_{3 \times 3} & -\left\lfloor\mathbf{R}_{i} \mathbf{R}_{i j} \mathbf{u}_{x}\right\rfloor_{\times}
\end{array}\right) \\
\frac{\partial \mathbf{e}_{o}}{\partial \boldsymbol{\Delta} \mathbf{x}_{i}} & =\left(\begin{array}{ll}
\mathbf{0}_{1 \times 3} & \mathbf{u}_{x}^{\top} \mathbf{R}_{i}^{\top} \mathbf{R}_{i j}^{\top}\left\lfloor\hat{\mathbf{R}}_{i j} \mathbf{u}_{x}\right\rfloor_{\times}
\end{array}\right) .
\end{aligned}
$$

Here, $\lfloor\mathbf{v}\rfloor_{\times}$denotes the skew-symmetric matrix built from vector \mathbf{v}.

Analogously - according to Eq. (2) - \mathbf{J}_{j} is composed as follows:

$$
\mathbf{J}_{j}=\left(\begin{array}{c}
\frac{\partial \mathbf{e}_{\mathbf{p}}}{\partial \boldsymbol{\Delta} \mathbf{x}_{j}} \tag{5}\\
\frac{\partial \mathbf{e}_{\mathbf{d}}}{\partial \boldsymbol{\Delta} \mathbf{x}_{j}} \\
\frac{\partial \mathbf{e}_{o}}{\partial \boldsymbol{\Delta} \mathbf{x}_{j}}
\end{array}\right)
$$

In the remaining we will indicate with $\lfloor\mathbf{v}\rfloor_{\mathrm{F}}$ the clipped skew-symmetric matrix built from vector \mathbf{v} as:

$$
\lfloor\mathbf{v}\rfloor_{\mathrm{F}}=\lfloor\mathbf{v}\rfloor_{\times}\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

Given these operators, Eq. (5) will expand in the following quantities:

$$
\begin{aligned}
\frac{\partial \mathbf{e}_{\mathbf{p}}}{\partial \Delta \mathbf{x}_{j}} & =\left(\begin{array}{ll}
-\hat{\mathbf{R}}_{i j}^{\top} & -\left\lfloor\hat{\mathbf{R}}_{i j}^{\top}\left(\mathbf{R}_{i} \mathbf{p}_{i j}+\mathbf{t}_{i}\right)-\hat{\mathbf{p}}_{i j}\right\rfloor_{\mathrm{F}}
\end{array}\right) \\
\frac{\partial \mathbf{e}_{\mathbf{d}}}{\partial \boldsymbol{\Delta} \mathbf{x}_{j}} & =\left(\begin{array}{ll}
\mathbf{0}_{3 \times 3} & \hat{\mathbf{R}}_{i j}\left\lfloor\mathbf{u}_{x}\right\rfloor_{\mathrm{F}}
\end{array}\right) \\
\frac{\partial \mathbf{e}_{o}}{\partial \boldsymbol{\Delta \mathbf { x }} \mathbf{x}_{j}} & =\left(\begin{array}{ll}
\mathbf{0}_{1 \times 3} & -\mathbf{u}_{x}^{\top} \mathbf{R}_{i j}^{\top} \mathbf{R}_{i}^{\top} \hat{\mathbf{R}}_{i j}\left\lfloor\mathbf{u}_{x}\right\rfloor_{\mathrm{F}}
\end{array}\right) .
\end{aligned}
$$

