
Chordal Based Error Function for 3-D Pose-Graph Optimization
Supplementary Material

This paper has been published on the IEEE Robotics and Automation Letters (RA-L).
Please cite this work as:

@article{aloise2019chordal,
title={Chordal Based Error Function for 3-D Pose-Graph Optimization},
author={Aloise, Irvin and Grisetti, Giorgio},
journal={IEEE Robotics and Automation Letters},
volume={5},
number={1},
pages={274--281},
year={2019},
publisher={IEEE}
}

Chordal Based Error Function for 3D Pose-Graph Optimization
Supplementary Material

Irvin Aloise and Giorgio Grisetti
Department of Computer, Control and Management Engineering

Sapienza University of Rome
Email: {ialoise,grisetti}@diag.uniroma1.it

I. SE(3) MAPPINGS

In the remaining of this section, we will assume that a generic SE(3) object A is composed as follows:

A ∈ SE(3) =

[
R t

01×3 1

]
. (1)

A possible minimal representation for this object could be using 3 Cartesian coordinates and the 3 Euler angles for the
orientation, namely

a =
[
x y z φ θ ψ

]>
. (2)

In order to pass from one representation to the other, we have to define suitable mapping functions. In this case, we use the
following notation:

A = ev2t(a) (3)
a = et2v(A). (4)

Starting from Eq. (3), while the translational component t is easy to recover from a, the rotational part requires to compose
the rotation matrix as follows:

R = R(φ, θ, ψ) = Rx(φ) Ry(θ) Rz(ψ). (5)

As a result, indicating with c the cos and with s the sin of an angle, matrix R is built as:

R =

r00 r01 r02

r10 r11 r12

r20 r21 r22

 =

cθ cψ −cθ sψ sθ
m n −cθ sφ
p q cθ cφ

 (6)

where

m = cφ sψ + sφ cψ sθ

n = cφ cψ − sφ sθ sψ
p = sφ sψ − cφ cψ sθ
q = sφ cψ + cφ sθ sψ

On the contrary, through Eq. (4) we compute the minimal parametrization a starting from A. Again, the rotational part we
have to compute φ, θ and ψ from Eq. (6).

Another possible minimal representation for a SE(3) object could use the unit-quaternion instead of the Euler angles. In
this case, given the unit-quaternion q = [qw qx qy qz]

> normalized by qw, the 6D minimal representation of A is

a =
[
x y z qx qy qz

]>
. (7)

Again, we have to define proper mapping functions to pass from one parametrization to the other, namely:

A = v2t(a) (8)
a = t2v(A). (9)

The function v2t computes the rotational component of A from the unit quaternion as follows:

R = R(q) =

1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2

x − 2q2
z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

 . (10)

On the contrary, to pass from the extended parametrization to the minimal one, we have to compute the quaternion components
from Eq. (10). Also in this case, the task is not straightforward and involves several non-linear functions.

!t

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

 0 20 40 60 80 100

ch
i2

Iteration

Guess Comparison - Type 3 Noise - Block Inversion (no eps)

chord / gt
chord / odom

chord / span
chord / c-init

stand / gt
stand / odom

stand / span
stand / c-init

(a) No ε parameter.

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

 0 20 40 60 80 100

ch
i2

Iteration

Guess Comparison - Type 3 Noise - Full Dimension

chord / gt
chord / odom

chord / span
chord / c-init

stand / gt
stand / odom

stand / span
stand / c-init

(b) ε = 10−6.

Fig. 1: Comparison between the computation of Ω̄ij with and without the ε parameter. Dataset is sphere-b with noise of type 3B. We performed 100
iteration of the g2o Gauss-Newton (GN) algorithm. These results are obtained using only one noise realization.

II. INFORMATION MATRIX PROJECTION ONTO THE CHORDAL ERROR SPACE

In this section we provide more details on how we project the original 6D measurement information matrix Ωij onto the
chordal error space, resulting in Ω̄ij . To do such task, one can use either the first order error propagation or the Unscented
Transform. In our case, using the former method does not capture entirely the non-linearity of the object (due to the first-
order approximation). For this reason, we used the latter method to perform the projection. In the remaining of this section,
we will make use of the notation introduced in Sec. I of this document. Given the original measurement 〈Zij ,Ωij〉, we
know that Ωij is expressed in the unit-quaternion based error space. Thus to compute the sigma points as follows:

– we compute the mean and covariance of the original measurement distribution as zij = t2v(Zij) and Σij = Ω−1
ij

respectively
– from the distribution N (0,Σij) we sample the 6D sigma points X(6) = 〈x(6), w

(6)
m , w

(6)
c 〉

– we compute the 12D sigma points X(12) from the original 6D ones X(6) as follows

x
(12)
0 = flatten(v2t(zij)) w(12)

m0
= w(6)

m0
w(12)
c0 = w(6)

c0

x
(12)
i = flatten(v2t(zij) v2t(+x

(6)
i)) w(12)

mi = w(6)
mi w(12)

ci = w(6)
ci [i = 1 . . . n]

x
(12)
i = flatten(v2t(zij) v2t(−x

(6)
i)) w(12)

mi = w(6)
mi w(12)

ci = w(6)
ci [i = n . . . 2n]

– reconstruct the distribution N (µ(12), Σ̄ij) from 12D sigma points X(12).

If Σ̄ij would have been full rank, we could compute Ω̄ij simply as Ω̄ij = Σ̄−1
ij . Still, since we are projecting elements

of a 6D space onto a 12D one, Σ̄ij is rank deficient and we cannot invert it. To overcome this issue, we can condition
the eigenvalues that are collapsed in Σ̄ij . More in detail, given a threshold ε > 0 and the eigendecomposition of the 12D
covariance matrix Σ̄ij = QΛQ−1, we can compute the conditioned eigenvalues as follow:

λ =

{
λ if λ ≥ ε
λ+ ε if λ < ε

We can now build the conditioned covariance matrix as

Σ̄cond
ij = Q Λcond Q−1 (11)

and compute the 12D information matrix as Ω̄ij = (Σ̄cond
ij)−1. Note that, if we only keep up to the 6 most informative

eigenvalues that are not null and we build Ω̄cond
ij as Ω̄cond

ij = (QΛ(6)Q−1)−1 we do not need the ε parameter. In this case
we noticed that the χ2 evaluated with our error function is similar to the one computed with the standard error function. Still,
since we are not using the entire information encoded in the error space, the convergence properties will be worsened - as
shown in Fig. 1. For this reason, in our experiments we preferred to use all the eigenvalues to reconstruct Σ̄cond

ij . However,
in this last case, ε becomes an parameter of the optimization process, acting as a regularization term.

III. JACOBIANS’ COMPUTATION

In this section, we provide the derivation of the Jacobians when using our error function, using the notation introduced
in Sec. I of this document. In our case, the increments are parameterized as Cartesian coordinates and 3 Euler angles,
namely:

∆x = [∆xx ∆xy ∆xz ∆xφ ∆xθ ∆xψ]>.

Given a edge Zij ∈ SE(3) connecting node Xi to Xj and its prediction Ẑij = h(Xi,Xj) ∈ SE(3), the error vector is
computed as:

eij(Xi,Xj) = Ẑij � Zij = flatten(X−1
i Xj)− flatten(Zij). (12)

Applying a small state perturbation ∆x to Eq. (12), the perturbed error becomes:

eij(Xi � ∆xi,Xj � ∆xj) = flatten
(

(ev2t(∆xi)Xi)
−1

(ev2t(∆xj)Xj)
)
− flatten(Zij) (13)

The Jacobian Jj is computed performing the partial derivative of Eq. (13) with respect to ∆xj :

Jj =
∂ eij(Xi,Xj � ∆xj)

∂∆xj

∣∣∣∣∣∆xi = 0
∆xj = 0

. (14)

We indicate with Rx(α), Ry(α) and Rz(α) the matrices describing a rotation of α around axis x, y and z respectively.
Additionally, we indicate with R′x, R′y and R′z the derivatives of the previously defined rotation matrices:

R′x =

0 0 0
0 − sin(α) − cos(α)
0 cos(α) − sin(α)

 R′y =

− sin(α) 0 cos(α)
0 0 0

− cos(α) 0 − sin(α)

 R′z =

− sin(α) − cos(α) 0
cos(α) − sin(α) 0

0 0 0

 . (15)

We name R′x0, R′y0 and R′z0 the matrices resulting posing α = 0 in Eq. (15):

R′x0 =

0 0 0
0 0 −1
0 1 0

 R′y0 =

 0 0 1
0 0 0
−1 0 0

 R′y0 =

0 −1 0
1 0 0
0 0 0

 . (16)

Finally, we refer to the column of each matrix in Eq. (16) as r′k0 with k = {x, y, z}. Returning to Eq. (14), thanks to the
fact that we are using the Euclidean minus in Eq. (13), Jj is composed as follows:

Jj =
[
flatten(∂h

∂∆xx
) flatten(∂h

∂∆xy
) flatten(∂h

∂∆xz
) flatten(∂h

∂∆xφ
) flatten(∂h

∂∆xθ
) flatten(∂h

∂∆xψ
)
]

(17)

where h = h(Xi,Xj) represents the predicted measurement. The quantities in Eq. (17) are easily computed in close form
as follows:

∂h

∂∆xx
=

[
R>i Rj R>i [1 0 0]>

01×3 1

]
∂h

∂∆xx
=

[
R>i Rj R>i [0 1 0]>

01×3 1

]
∂h

∂∆xx
=

[
R>i Rj R>i [0 0 1]>

01×3 1

]
(18)

∂h

∂∆xφ
=

[
R>i R′x0Rj R>i R′x0tj

01×3 1

]
∂h

∂∆xθ
=

[
R>i R′y0Rj R>i R′y0tj

01×3 1

]
∂h

∂∆xψ
=

[
R>i R′z0Rj R>i R′z0tj

01×3 1

]
(19)

Finally, J̃i can be computed straightforwardly from Eq. (17), leading to the relation

Ji = −Jj (20)

The numerical property expressed in Eq. (20) can potentially speedup the computation of matrix H, since for each edge we
only have to compute a single Jacobian - i.e. less FLOPS are required for the linearization of each Zij . We recall that to
build the H matrix, for each edge Zij we have to compute the following H components:

Hii = J>i ΩijJi Hjj = J>j ΩijJj

Hij = J>i ΩijJj Hji = J>j ΩijJi.

Moreover, we have to calculate also the b components relative to Zij , namely:

bi = J>i Ωijeij bj = J>j Ωijeij .

Note that, the matrix involved have dimension 12×6 and 12×12, respectively for Ji/Jj and Ωij . Therefore, computing the
products J>ΩijJ and J>Ωijeij result to be very time consuming. However, given that Ji = −Jj , the following relations
hold:

Hjj = Hii Hij = −Hii Hji = −Hii

bj = −bi.

Thanks to the property in Eq. (20), we can compute the two time consuming products only once. If one embeds this property
in a custom implementation of a generic Iterative Least-Squares (ILS) algorithm - e.g. GN or Levemberg-Marquardt (LM) -
it leads to a sensible increase in terms of speed. Moreover, the H matrix results to be Laplacian. This characteristic might
be exploited to increase the speed of the linear solver, however, this topic is not analyzed in this work.

IV. COMPARING ERROR AND PERTURBATION PARAMETRIZATIONS

As reported in Sec. V-D, different combinations of error and increment parametrization can be used in Pose-Graph
Optimization (PGO). In this section, we compare the following combinations of parametrizations:

– {quaternion, euclidean} based standard error fuction + {quaternion, euclidean} based increments
– chordal based error fuction + {quaternion, euclidean} based increments.

We compared the χ2 evolution of all those approaches, recomputing it at each iteration with the standard standard function
- i.e.the one that uses the unit quaternion parametrization - to avoid any bias in the evaluation. The optimization algorithm
used is GN in all cases. In left column of Fig. 2 we reported the χ2 of the grid dataset, using type 3A noise to perturb the
edges. In this case, both from good - Fig. 2a - or poor - Fig. 2c and Fig. 2e - our approach delivers similar performances
compared to all the standard error functions. Still, when the covariances results to be highly non spherical - as they are using
type 3B noise - all the standard approaches exhibit convergence issue. On the contrary, when starting from a reasonable
initial guess - e.g. the spanning tree - our approach always succeeds in finding the optimal configuration. From extremely
poor initial configurations - e.g. the odometry - our approach result in sub-optimal configurations, but closer to the optimum
compared to standard approaches. These evaluations are reported in the right column of Fig. 2. All the experiments refer to
only one realization of noise.

10
5

10
6

 0 10 20 30 40 50

ch
i2

Iteration

Error / Perturb Factorization - Type 3 Noise [initial guess:chordal initialization]

quat error / quat pert
chordal error / euler pert

 euler error / quat pert

chordal error / quat pert
euler error / euler pert
quat error / euler pert

(a) Initialization: chordal; noise: 3A.

10
5

10
6

10
7

10
8

10
9

10
10

 0 10 20 30 40 50

ch
i2

Iteration

Error / Perturb Factorization - Type 3 Noise [initial guess:chordal initialization]

quat error / quat pert
chordal error / euler pert

 euler error / quat pert

chordal error / quat pert
euler error / euler pert
quat error / euler pert

(b) Initialization: chordal; noise: 3B.

10
5

10
6

10
7

10
8

 0 10 20 30 40 50

ch
i2

Iteration

Error / Perturb Factorization - Type 3 Noise [initial guess:spanning tree]

quat error / quat pert
chordal error / euler pert

 euler error / quat pert

chordal error / quat pert
euler error / euler pert
quat error / euler pert

(c) Initialization: spanning tree; noise: 3A.

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

10
26

 0 10 20 30 40 50

ch
i2

Iteration

Error / Perturb Factorization - Type 3 Noise [initial guess:spanning tree]

quat error / quat pert
chordal error / euler pert

 euler error / quat pert

chordal error / quat pert
euler error / euler pert
quat error / euler pert

(d) Initialization: spanning tree; noise: 3B.

10
5

10
6

10
7

10
8

10
9

 0 10 20 30 40 50

ch
i2

Iteration

Error / Perturb Factorization - Type 3 Noise [initial guess:odometry]

quat error / quat pert
chordal error / euler pert

 euler error / quat pert

chordal error / quat pert
euler error / euler pert
quat error / euler pert

(e) Initialization: odometry; noise: 3A.

10
9

10
10

10
11

10
12

10
13

10
14

10
15

 0 10 20 30 40 50

ch
i2

Iteration

Error / Perturb Factorization - Type 3 Noise [initial guess:odometry]

quat error / quat pert
chordal error / euler pert

 euler error / quat pert

chordal error / quat pert
euler error / euler pert
quat error / euler pert

(f) Initialization: odometry; noise: 3B.

Fig. 2: Evolution of the χ2 on the grid dataset using different parametrizations for the error and the perturbation vectors. The left column reports
experiments using type 3A noise. In the right column are reported the comparisons using type 3B noise. In all cases we performed 50 iterations of GN
optimization in the g2o framework.

	SE(3) Mappings
	Information Matrix Projection onto the Chordal Error Space
	Jacobians' Computation
	Comparing Error and Perturbation Parametrizations

