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Chordal Based Error Function for 3D Pose-Graph Optimization

Irvin Aloise Giorgio Grisetti

Abstract—Pose-Graph Optimization (PGO) is a well-known
problem in the Robotics community. Optimizing a graph means
finding the configuration of the nodes that best satisfies the
edges. This is generally achieved using iterative approaches that
refine a current solution until convergence. Nowadays, Iterative
Least-Squares (ILS) algorithms such as Gauss-Newton (GN)
or Levenberg-Marquardt (LM) are dominant. Common to all
these implementations is the influence of the error function used
to measure the difference between prediction and observation.
The smoother the error function is, the better the convergence
properties of the system become, resulting in an increased
convergence basin and more stable behavior. In this work,
we propose an alternative error function based on a variant
of the Frobenious norm between transformation matrices. The
proposed approach leads to a larger convergence basin and
to numerical properties in the Jacobian computation that can
potentially speed-up the system. In contrast with some existing
approximations, our formulation allows to model isotropic and
anistropic noise covariances. To validate our conjectures, we
present an extensive comparative analysis between our approach
and one of the most used error function that computes the
distance in the unit-quaternion space.

I. INTRODUCTION

Mobile robots that have to accomplish non trivial tasks in
an unknown environment require a map that describes the
surrounding, together with a reasonable estimate of their pose
in this representation.

The problem of building the map while estimating the robot
pose is known as Simultaneous Localization and Mapping
(SLAM) and it has been studied since many years by the
community [1] [2]. Many paradigms have been investigated to
solve this problem, still, the most promising - and most used
nowadays - is the so called graph-based approach. Graph-
based SLAM systems are known to be efficient and accurate,
allowing to have the flexibility and scalability that one expects
from current state-of-the-art implementations. As discussed
in [3], in this paradigm the SLAM system is built by two
main components: a front-end and a back-end. The former is in
charge of processing raw data coming from on-board sensors
and construct an abstract graph - a stochastic representation of
a map. Nodes embody robot poses or the position of generic
landmarks - e.g. salient world points - while edges express
constraints between subsets of nodes, which are computed
from the raw data.

Generally, this graph is build incrementally while the robot
travels in the environment. Inconsistencies might arise due
to sensor aliasing that cause failures in data association,
ultimately leading to a corrupted map. The most intuitive
way to prevent wrong associations is to restrict the search for
potential matches in the map based on the global configuration
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(a) Standard error function output. (b) Chordal error function output.
Fig. 1: In the first row: output of 100 iteration of Gauss-Newton (GN)
optimization using the spanning tree for the initialization, using respec-
tively the standard (1a) and the proposed error function (1b). The AWGN
added to the edges has covariance Σt = diag(0.5; 0.5; 0.01) and ΣR =
diag(0.0001; 0.0001; 0.1) respectively for the translation and rotation com-
ponent of the edge.

of the graph. To implement this strategy, the graph should be
optimized each time the addition of a new constraint renders
the current solution far from the optimum. The back-end is
the module in charge of providing such an optimal nodes’
configuration, based on the constraints. The front-end, in turn
uses this optimal configuration to perform informed searches.
It results that desired properties for a back-end are speed,
accuracy and having a large convergence basin.

In the graph-based SLAM paradigm, a pose-graph is a
specialization of a generic graph, in which nodes and edges
represent robot poses and pose constraints between two nodes,
respectively. The problem represents the backbone of SLAM.
Many systems [4] [5] [6] are able to perform Pose-Graph
Optimization (PGO) in real-time, even on graph with thou-
sands of nodes and edges. The majority of them is based on
Iterative Least-Squares (ILS) algorithms, solving a quadratic
approximation of the original problem. The ability to solve
a problem by an ILS back-end depends mainly on how close
the initial guess is to the optimal solution and well a quadratic
approximation captures the original non-linear problem. Many
works investigated how to compute good initial guess for pose-
graphs, using different approaches, an excellent overview is
provided by Carlone et al. [7].

PGO is a highly non-linear problem, since both nodes and
edges involve orientations. The non-linearity of a function
might be evaluated by analyzing its derivatives. To the limit,
if the error functions have a constant Jacobian matrices, ILS
would converge in just one iteration. Clearly this is not the
case, since the problem is defined to be non-linear. However
by choosing error functions whose Jacobian change mildly
leads to a more stable behavior of ILS.

In this work, we propose an error function for 3D PGO that
shows a smoother behavior. The proposed approach is based
on a variant of the Frobenious norm that and can be seamlessly
embedded in existing SLAM pipelines. Our function can
be also derived (and thus implemented) rather easily. The
increased smoothness, results in an enlarged convergence basin
that allows ILS to retrieve the optimal solution in conditions
when traditional approaches fail, as illustrated in Fig. 1.



Our claims are supported by a broad range of comparative
experiments. We also release an open-source C++ plugin1 for
the well-known optimization framework g2o that embeds the
proposed error function.

II. RELATED WORK

SLAM is a well known problem and it has been studied
intensively by the research community in the past years.
Many paradigms have been proposed to efficiently solve this
problem. Early approaches were based on filtering, proposing
solution based on Gaussian Filters (GF) [8] [9] [10] [11]
[12] [13] or Particle Filters (PF) [14] [15] [16]. Nonetheless,
GF suffer from the intrinsic non-linearity of the problem -
attenuated using the Unscented Transform [17]. Furthermore,
those systems require to store the entire covariance matrix
of the system. This can be prohibitive when the number of
variables is large. In contrast, PF can better handle non-
linear sensor models and non-Gaussian noise, however, the
number of particles involved easily becomes non-treatable in
real-time for very large environments. Thanks to increased
computational power available on newer machines, Maximum-
A-Posteriori (MAP) based approaches started to gain attention,
due to their efficiency and accuracy. As a result, the graph-
based model became the gold standard in last decade to
address this kind of problem.

The work of Lu et al. [18] represents the first use of
this paradigm in SLAM, applying it in the context of laser
scans registration. They build a graph whose nodes are either
robot poses or points relative to the laser scan acquired from
that pose. Edges represent spatial constraints between nodes,
obtained both from odometry measurements or by registering
pairs of nearby scans. In this scenario, they optimize the graph
using a the well-known GN optimization algorithm. Therefore,
the final map is obtained through iterative minimization of an
objective function that considers the difference between the
relative pose between two nodes and the relative pose reported
by the scan-matcher. Gutmann and Konolidge [19] addressed
the problem of incrementally build a map, finding topological
relations and loop closures. To achieve good performances the
optimization considers only inconsistent portions of the graph,
affecting the accuracy of the solution.

These works were among the first implementations of a full
graph-based SLAM pipeline. In these systems, the back-end
was seen as a computational bottleneck. Accordingly, the com-
munity invested increasing effort in providing more efficient
back-ends. Duckett et al. [20] proposed an approach leveraging
on Gauss-Seidel relaxation. In this work they update one node
at the time by moving along the gradient of the error function
and assuming the neighbors are fixed. Relaxation is easy
to implement and memory efficient, since it did not require
to store any system matrix. Still, its convergence is slow
compared to ILS approaches. To overcome this issue Frese
et al. [21] proposed a multilevel version of the optimization
algorithm. Howard et al. [22] extended the use of relaxation

1Source code: https://srrg.gitlab.io/g2o chordal plugin.html

to other Robotics tasks, like the calibration of a distributed
sensor network.

Olson et al. [23] proposed an approach based on Stochastic
Gradient Descent (SGD). His method uses represents the
node’s position as the composition of the increments along
a 2D trajectory. By using these representation, updating a
constraint can be done in logarithmic time. SGD has shown
to be robust to poor initial guesses, and to get close to
the optimum. Subsequently, Grisetti et al. [24] extended this
approach to 3D environments, and modified the representation
of the node’s position by using the increments on a spanning
tree rather than along the trajectory. This alternative further
improves the convergence speed.

The optimization of a graph in SLAM is by definition a
sparse problem. This is due to the fact that edges connect
only a small subset of nodes. This is a consequence of the
spatial locality of the problem: only nodes that are close in
space can be connected by measurements. The number of
constraints that can originate from a node depends on the
sensor range and the density of the trajectory. Typical front-
end implementations, do not augment the graph if the robot did
not travel a minimum distance since the past location. Some
more advanced front-ends [25], even reuse existing nodes upon
revisits. These strategies bound the node density. When the
graph is sparse, the approximated Hessian matrix built by a
ILS approach is sparse too. In fact its sparsity pattern reflects
the adjacency matrix of the graph. Dallaert et al. [26] took
advantage of this feature releasing a system called

√
SAM .√

SAM was the first system in the SLAM literature to highlight
and exploit the sparse nature of SLAM in the context of ILS
approaches by achieving performances that were at the state of
the art. Kaess et al. upgraded

√
SAM to iSAM [27] by adding

incremental optimization. Later iSAM2 [28] presented an
alternative formulation to represent the problem and implicitly
represent and factorize a sparse system. Kümmerle et al. [4]
embedded in their framework - called g2o - similar ideas,
together with an effective implementation that allowed the
system to reach state-of-the-art performances. The framework
offers a great modularity - e.g. allowing to use different
linear solvers or optimization algorithm - and takes advantage
of CPU cache and SIMD instructions to perform fast math
operations.

Optimization problems are affected by the initial state con-
figuration. Moreover, graph dimension affects the scalability
of system, reducing drastically system performances when
the number of nodes and edges grows. To cope with those
problems, Ni et al. [29] and subsequently Grisetti et al. [30]
applied divide and conquer strategies to perform optimization.
The former exploits nested dissections to partition the linear
system; the latter, instead, builds several connected local
subgraph, resulting in a sparser problem.

While designing a front-end for SLAM, the marginal co-
variances of the node’s estimate play an important role in
restricting the candidate data association. Computing this
estimate, however is a computationally expensive operation.
In SLAM++, Ila et al. [31] take advantage of the incremental
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aspect of the problem to propose a fast mean and covariance
updates for the estimate. They do not re-linearize the entire
graph at each optimization epoch, instead they selectively
update the factor contributions in the approximated Hessian
matrix and recompute the factorization only for some changed
regions. This feature, combined with fast block matrix oper-
ations and the use of massively parallel computing units -
e.g. GPUs - allows SLAM++ to achieve state-of-the-art speed
performances.

All those approaches suffer from the non-linearities in-
troduced by the rotational component of the system’s state
and this leads to weak convergence results when the initial
guess has a noisy rotational part. Given the complexity of the
problem, the research community proposed many approaches
to solve a relaxed version of the problem, that still produces a
solution closer to the global optimum of the original one. Mar-
tinec et al. [32] explored chordal relaxation to easily initialize
ill-posed pose-graphs. As highlighted by Carlone et al. [7],
this initialization technique is able to produce good initial
guesses despite its intrinsic simplicity. Cucuringu et al. [33]
and Arrigoni et al. [34] proposed a spectral formulation of
the problem, respectively in the context of sensor network
localization and camera estimation. Rosen et al. [35] explored
Semi-Definite Programming (SDP) relaxation in PGO, devel-
oping an algorithm - called SE-Sync - to synchronize generic
SE(d) graphs. However, despite the good results achieved,
their approach requires an ad-hoc implementation, that solves
the problem in multiple steps - i.e. first the rotation component
of the object is retrieved and the orthonormality is enforced,
then the translation is computed fixing the computed rotation.
Briales et al. [36] in their system called Cartan-Sync extended
SE-Sync focusing on performances and scalability. They use
the Frobenius norm in the objective function and jointly
optimize rotation and translation through SDP relaxation.
However, they share the implementation drawbacks of SE-
Sync and assume that the noise covariances are isotropic. More
recently, Wang et al. [37] investigated the influence of novel
error function for SE(2) objects, that computes the error term
relative to the orientation part of the odometry through the
Frobenius norm. Still, their work is bounded to SE(2) objects.

We extend the concept of chordal relaxation for SE(3)
objects - i.e. in 3D PGO - embedding it in ILS algorithms.
Those represent the de-facto standard in SLAM pipelines,
being easy to implement while delivering fast and accurate
performances in general. The proposed approach, increases the
robustness of the system with respect to measurement noise
and provides an enlarged convergence basin while keeping
the implementation complexity bounded. Even if our approach
does not certify that the retrieved solution is the exact solution
of the original problem [38] [39], we provided a substantial
number of experiments to show that if the convergence is
correct, the two minima configurations are almost identical
in the majority of the cases.

III. POSE-GRAPH OPTIMIZATION

In this section we give a brief overview of the mathematical
concepts to perform PGO. A pose-graph is a factor graph
whose nodes represent robot (or sensor) poses and edges
encode relative transformation between two nodes. Given the
pose-graph G, let X = X1:N be nodes and let {〈Zij ,Ωij〉}
be the set of edges in graph. Each edge Zij connects the i-th
node to j-th one, while the associated information matrix Ωij

describes the edge uncertainty along each dimension. Given an
initial configuration of nodes X̄, optimizing the graph means to
find the optimal nodes configuration X? that best satisfies the
edges. As a result, the PGO problem minimizes the following
cost function:

X? = argmin
X

∑
i,j

cij(Xi,Xj)

= argmin
X

∑
i,j

||eij(Xi,Xj)||2Ωij
. (1)

The error vector eij(Xi,Xj) computes the mismatch between
measurement 〈Zij ,Ωij〉 and its prediction Ẑij = hij(Xi,Xj)
- which depends from the current nodes configuration. Hence,
supposing to have Euclidean measurements - indicated with
zij - the error between prediction and observation will be:

eij(X) = eij(Xi,Xj) = ẑij − zij = hij(Xi,Xj)− zij . (2)

Still, in PGO measurements lie in SE(n) which is a smooth
manifold. Hence, to compute Eq. (2) we have to define a
proper operator � that returns an Euclidean vector Ẑij�Zij =
∆zij representing the manifold distance mapped onto Rn.
Accordingly, if Zij = Ẑij then the difference vector ∆zij
will be zero. As a result, the error vector considering manifold
measurements 〈Zij ,Ωij〉 will be computed as:

eij(Xi,Xj) = Ẑij � Zij = hij(Xi,Xj) � Zij . (3)

The minimization of cost function Eq. (1) is generally
performed using ILS approaches - e.g. GN or Levenberg-
Marquardt (LM). Since the problem is non-linear, those ap-
proaches solve a linear (or quadratic) approximation of the
original problem around the current state configuration. The
latter is obtained expanding the error Eq. (3) using the first-
order Taylor expansion around X̆:

eij(X̆ � ∆x) ≈ eij(X̆i, X̆j) +
∂eij(X̆ � ∆x)

∂∆x

∣∣∣∣
∆x=0

∆x

= eij(X̆i, X̆j) + Jij∆x. (4)

Since the state space is SE(n) both for measurements and
the states, we define an operator � that applies an Euclidean
perturbation ∆x to a manifold object X. Intuitively, if ∆x =
0 then X � ∆x = X. Introducing Eq. (4) each term of the
cost function Eq. (1) represents a quadratic form in ∆x:

eij(X̆ � ∆x) ≈∆x>J>ijΩijJij∆x + 2e>ijΩijJij∆x + c.

Indicating with Hij = J>ijΩijJij and with b> = e>ijΩijJij

and extending the relation to all the graph’s edges, we end in



the following:

∆x? = argmin
∆x

∑
i,j

eij(X̆ � ∆x)

= argmin
∆x

∆x>
∑
i,j

(Hij)∆x + 2
∑
i,j

(b>ij)∆x + c

= argmin
∆x

∆x>H∆x + 2b>∆x + c (5)

In Eq. (5) we are computing the optimal state perturbation
that will be applied to the current configuration through the
previously defined operator X̄ = X̆ � ∆x. ILS algorithms
repeatedly solve Eq. (5), until convergence is reached. We
refer the reader to [3] for further details on Least-Squares
based graph optimization. Summarizing, to perform graph
optimization having both the nodes and edges lying on a
smooth manifold we should define:

– proper parametrizations for the increment ∆x and the
error vector eij

– the operator to apply an Euclidean perturbation to a
manifold object - i.e. the �

– the operator to compute an Euclidean difference vector
from two manifold objects - i.e. the �.

Once defined those entities, we can perform ILS optimization
on arbitrary combinations of nodes and edges.

IV. ERROR FUNCTIONS IN SE(3)

In this scenario, the manifold representation for both nodes
and measurements is a 3D isometry T. A possible repre-
sentation for the perturbation might be a 6D vector ∆x =
(∆x ∆y ∆z ∆qx ∆qy ∆qz)>. Note that we indicate with
q = (qx qy qz)> the unit quaternion normalized by qw, while
t = (x y z)> describes the Cartesian coordinates in the space.
Given this notation, the two parametrizations are:

X =

(
R t

01×3 1

)
∆x =

(
∆t> ∆q>

)>
. (6)

In Eq. (6), R = R(q) is the rotation matrix computed from
the unit quaternion q. Assuming that eij = (t>e q>e )> is
represented in the same way of the perturbation, to perform
the optimization we should define the operators � and � to
apply the increment and compute the error vector. These are
defined as follows:

X � ∆x = v2t(∆x)X Xa � Xb = t2v(X−1b Xa). (7)

Given a perturbation vector ∆x defined as in Eq. (6), v2t
computes the relative isometry as follows:

v2t(∆x) =

(
R ∆t

03×1 1

)
(8)

∆t =
[
∆x ∆y ∆z

]T
R = R(∆q) (9)

On the contrary, the function t2v retrieves te and qe from the
isometry. Computing the translation from a SE(3) objected
is a straightforward task, however, computing the minimal
representation of the rotational component is not easy and
involves several non-linear functions. A ”smooth” function

will have derivatives that change mildly and, thence, can be
better approximated by its first-order Taylor expansion. On
the contrary, less smooth functions might not be well approxi-
mated using only the first-order terms of the expansion, leading
to a less stable optimization in general. In the remainder
of this section we will propose the use of a different error
function that is smoother and, thus, can be better described by
its linear approximation.

A. Chordal-Distance Based Error Function

In this section we analyze a different error function for
SE(3) objects based on the concept of chordal distance and
we show how to embed it in the PGO context.

Given the manifold parametrization X in Eq. (6), we can
define a simple function that given a 3D isometry T, stacks
its components in a 12D vector as follows:

flatten(T) =
(
r>1 r>2 r>3 t>

)>
(10)

where rk represents the k-th column of matrix R. The inverse
function is straightforwardly defined as:

unflatten(v) =

[[
r1 r2 r3

]
t

01×3 1

]
(11)

Hence, we redefine the � as follows:

Xa �ch Xb = flatten(Xa)− flatten(Xb)

= flatten(Xa −Xb). (12)

In other words, in Eq. (12) we are computing the error
vector through the element-wise difference between Xa and
Xb. As for the minimal parametrization for the increment,
we use the Cartesian coordinates and Euler angles, resulting
in ∆x = [x y z φ θ ψ]>. To pass from the increment
parametrization to the extended one, we use the function
ev2t(∆x). As a result the new operator �euler is defined
as X �euler ∆x = ev2t(∆x)X. The complete mathematical
derivation of the function ev2t is reported in the supplemen-
tary material. We can now introduce the new operators �euler

and �ch in the standard optimization process presented in the
previous sections. As a result, the error between predicted and
actual measurement is computed as follows:

eij = Ẑij �ch Zij = flatten(X−1i Xj)− flatten(Zij). (13)

The Jacobians Ji and Jj derived from Eq. (13) are much
simpler to compute in closed form with respect to the standard
error function. Moreover, the two Jacobians are linked by the
relation Ji = −Jj . Thanks to this property, it is possible to
speedup the composition of the linear system in the optimiza-
tion step. We refer the reader to the supplementary material
for further details on the Jacobians computation.

To keep the optimization consistent, the information ma-
trix Ωij relative to edge Zij should be projected onto the
error space. This is generally done either through first-order
error propagation or using the Unscented Transform. In our
implementation, we preferred the latter, since it better handles
the non-linearities. We report the complete derivation with the



Unscented Transform in the supplementary material. Note
that our approach projects 6D points - i.e. the sigma points
extracted from the measurement density - onto a 12D space.
This means that the 12D reconstructed covariance Σ̄−1k is
rank deficient. Accordingly, we cannot exactly compute the
information matrix Ω̄k = Σ̄−1k . We overcome this problem
adding a value ε > 0 to the null eigenvalues of Σ̄k, before
inverting it. We verified performing the inverse projection
(from 12D to 6D) and checking that the result obtained is
numerically close to the original. Nevertheless, we noticed
that the right value of ε depends from the magnitude of the
eigenvalues of Ωk. One can also simply remove those null
eigenvalues while computing Ω̄k, resulting, however, in a less
stable optimization and in worse convergence properties in
general. Further details about this parameter are reported in
the next section.

V. EXPERIMENTAL EVALUATION

In this section we propose a set of experiments to support
our claim that the chordal error function in PGO is more
robust to noise and has a larger convergence basin, compared
to the standard error function that works in the unit-quaternion
space. To this end, we performed convergence analysis of the
optimization on several benchmark datasets for 3D PGO using
both error functions. We varied both the noise figures applied
to the measurements and the initial guess, to cover the majority
of use cases. We compared the χ2 evolution - i.e. the sum of
the residual error eij computed on each measurement Zij - of
the optimization in both cases, recomputing it at each iteration
of the chordal optimization with the standard error function.
In this way, we can obtain an unbiased evaluation of the con-
vergence of the approaches. We will refer to the recomputed
χ2 as the chordal reprojected one. In the remaining of this
section, all the plots of the chordal χ2 actually refer to the
chordal reprojected one. Furthermore, in the experiments we
also report the evolution of the χ2 feeding as input the ground
truth. We do this to provide a baseline for χ2 given the noise
affecting the edges. Finally, in the supplementary material
of this letter, we provide further experiments to validate our
conjectures using alternative parametrizations both for the
increments and the error vector.

A. Specifications of Datasets

We used standard 3D benchmark datasets for PGO which
are publicly available. We generated also 3 more datasets,
and those are released together with our g2o plugin code.
We applied different noise figures to the edges, resulting
in multiple noise configurations. For each configuration, we
sampled from Nt(0,Σt) and NR(0,ΣR) respectively for the
translational and rotational components of the measurement.
Experiments provided can be grouped in two, depending on
the shape of the noise applied:

– Isotropic noise: in this group the noise covariances Σt is
of composed as Σt = diag(η η η); the same applies to
ΣR - with a different value on the diagonal.

– Anisotropic noise: we tried to simulate a planar naviga-
tion, a common task in generic Robotics application. As
a result, the covariances relative to the translational and
rotational components are respectively Σt = diag(η η ζ)
with η > ζ and ΣR = diag(ξ ξ κ) with κ > ξ. Therefore,
their shapes are highly non spherical, impacting on the
convergence of the optimization process.

Further details on the noise distributions used in the experi-
ments are reported in Tab. I, both for isotropic and anisotropic
cases. We performed the tests on 10 random noise realizations
for each distribution reported in Tab. I. Finally, we initialized
the graphs using different techniques: odometry, the spanning-
tree implementation of g2o and the chordal initialization of
Martinec et al. [32]. The remaining of this section is structured
as follows: in Sec. V-B we will analyze the convergence of
our approach in the case of isotropic noise, while in Sec. V-C
we will consider anisotropic one; finally, we will investigate
the effect of projecting the original 6D information matrix Ωij

onto a higher dimensional space. On the software web-page,
we report the results for each noise scenario. However, due
to space limitations, in this letter we show only the results
obtained with severe noise figures, since the approaches are
substantially equivalent in the case of small noise.

B. Isotropic Covariance

In this scenario, we projected edges information matrix Ωij

using ε = 0.1. The optimization algorithm is the standard GN
implemented in g2o. Considering severe noise figures - i.e. 3A
- the increased smoothness of our error function leads to better
results in general. In particular, both approaches fail in finding
the optimal solution in many cases. Still, we noticed that the
standard error function is less numerically stable, leading to
fatal optimization failure in most of the trials when the graph
is badly initialized. In Fig. 2a, we report the evolution of the
χ2 on the dataset sim-manhattan, where we consider only
trials that do not incur in fatal errors. However, as reported
in Fig. 2b, the standard error function leads to fatal errors
in most of the trials when starting from bad initial guesses.
Finally, Fig. 3 shows that the time to perform one iteration of
GN - the standard g2o implementation - remains similar to the
standard approach, despite the fact that the matrices involved
have bigger dimensions. The plot reports the mean time per-
iteration together with its standard deviation, computed over
100 iterations.
C. Anisotropic Covariance

In these experiments, the uneven shape of the noise infor-
mation matrix Ωij requires a lower value for the conversion
factor ε. The number of degenerate eigen values is higher and,
therefore, using a value ε > 10−6 will lead to the solution of
a different problem. We empirically found that ε = 10−6 is
a good conversion value in such scenario. The optimization
algorithm is again GN. Also in this case, when the noise
is relatively bounded - e.g. type 1B and 2B - the two ap-
proaches are basically equivalent. They both reach the optimal
configuration in few iterations, independently from the initial
guess, in almost all the datasets. Nevertheless, increasing the



Isotropic Anisotropic
Config. Name Σt [m] ΣR [rad] Config. Name Σt [m] ΣR [rad]

1A diag(0.01; 0.01; 0.01) diag(0.001; 0.001; 0.001) 1B diag(0.01; 0.01; 0.001) diag(0.0001; 0.0001; 0.001)
2A diag(0.1; 0.1; 0.1) diag(0.01; 0.01; 0.01) 2B diag(0.1; 0.1; 0.01) diag(0.0001; 0.0001; 0.01)
3A diag(0.5; 0.5; 0.5) diag(0.1; 0.1; 0.1) 3B diag(0.5; 0.5; 0.01) diag(0.0001; 0.0001; 0.1)

TABLE I: Covariances of the noise distribution used to perturb the measurements.
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Fig. 2: Evolution of the χ2 in the sim-manhattan dataset under noise of type 3A (left). We used GN as optimization algorithm, starting from multiple initial
guesses - i.e. odometry, spanning tree and chordal initialization. As the baseline, we report the evolution of the χ2 when the initial guess is the ground-truth.
To fairly compare the two approaches, we only consider the trials that have not incurred in fatal errors. On the right: number of trials that succeeded in
performing the optimization.

noise affecting the edges to level 3B produces different results.
The extremely uneven shape of the information matrix Ωij

emphasizes the non-linearity of the standard error function,
leading to sub-optimal solutions in several trials. Using the
chordal error leads to better results in general, even from bad
initial guesses. In Tab. II we report a comparison of the results
obtained performing 100 iterations of GN with measurements
affected by noise of type 3B. We used different initialization
for the graph to analyze the convergence basin of the two
error functions. We reported as baseline the χ2 obtained after
the optimization when the initial guess is the ground truth
- referred as Optimal χ2 in Tab. II. The analysis has been
performed on 10 different noise realizations. From the latter
we can also observe that the two minima are numerically
close in all the cases. From these experiments the reader might
notice how the standard error function is able to reach a better
χ2 mainly when the initial guess fed is not so far from the
optimum - i.e. the chordal initialization. In badly initialized
graph, the greater smoothness of the chordal error function
helps the convergence, reaching better configurations - even
if they are sub-optimal. In Tab. II, we report also the number
of times that the optimization converged to a local or global
optimum - starting from different initial guesses. Note that,
there are some scenarios in which using the standard error
function leads to failure in all the trials, while our approach
leads to local minima not far from the optimum - e.g. dataset
sim-manhattan using the odometry as guess. Times per
iteration are almost identical to the ones reported in Sec. V-B
and, thus, due to the space limitations of the manuscript, are
not reported here.
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Fig. 3: Mean and standard deviation of the time per iteration using the vanilla
g2o implementation of GN. The initial guess is the ground-truth. Best in color.

D. Using Different Error and Perturbation Spaces

We conducted the previously presented experiments us-
ing the standard implementation of g2o for the quaternion-
based error function. In this case, the error vector is e =
[ex ey ez eqx eqy eqz]>, where [eqx eqy eqz] repre-
sents the rotation mismatch as unit quaternion. The same
parametrization is also used for the increment vector ∆x =
[∆xx ∆xy ∆xz ∆xqx ∆xqy ∆xqz]>. Another commonly
used minimal parametrization for SE(3) objects is the one
that uses Euler angles. Given that the parametrization adopted
in the error vector might be different from the one of



GUESS INITIAL χ2 FINAL χ2 [OUR] FINAL χ2 [STAND.] OPTIMUM [OUR] OPTIMUM [STAND.]
g
a
r

odom 4.38E+10 7.75E+05 ± 198.7% [10] - [0] χ2 = 4.58E+04
ATEpos = 7.395 [m]
ATErot = 0.585 [rad]

χ2 = 3.43E+04
ATEpos = 7.679 [m]
ATErot = 0.607 [rad]

span 1.68E+07 1.75E+06 ± 279.4% [10] - [0]
c-init 2.44E+06 8.66E+05 ± 81.1% [10] 8.05E+04 ± 1.7% [2]

g
r
i
d odom 4.64E+11 2.42E+09 ± 112.4% [10] 4.05E+09 ± 52.8% [10] χ2 = 1.01E+06

ATEpos = 1.666 [m]
ATErot = 0.032 [rad]

χ2 = 9.66E+05
ATEpos = 1.668 [m]
ATErot = 0.025 [rad]

span 2.67E+11 1.01E+06 ± 3.2% [10] 3.20E+10 ± 60.0% [10]
c-init 4.06E+09 1.01E+06 ± 3.2% [10] 9.66E+05 ± 3.0% [10]

s
-
m
a
n odom 2.35E+10 7.38E+05 ± 32.0% [10] - [0] χ2 = 4.31E+05

ATEpos = 0.960 [m]
ATErot = 0.227 [rad]

χ2 = 3.85E+05
ATEpos = 0.816 [m]
ATErot = 0.171 [rad]

span 5.77E+07 4.31E+05 ± 0.5% [10] 3.86E+05 ± 1.5% [6]
c-init 1.10E+06 4.31E+05 ± 0.5% [10] 3.85E+05 ± 0.3% [10]

s
p
h
-
b odom 3.82E+11 1.47E+05 ± 1.4% [10] 5.98E+09 ± 150.7% [10] χ2 = 1.47E+05

ATEpos = 1.208 [m]
ATErot = 0.071 [rad]

χ2 = 1.23E+05
ATEpos = 1.223 [m]
ATErot = 0.048 [rad]

span 4.60E+11 1.47E+05 ± 1.4% [10] 5.00E+09 ± 53.8% [10]
c-init 1.20E+09 1.06E+08 ± 14.7% [10] 7.22E+09 ± 245.2% [10]

t
o
r
-
b odom 2.01E+09 1.02E+08 ± 187.2% [10] 4.95E+11 ± 137.8% [3] χ2 = 1.19E+04

ATEpos = 1.116 [m]
ATErot = 0.229 [rad]

χ2 = 8.75E+03
ATEpos = 0.967 [m]
ATErot = 0.166 [rad]

span 1.54E+10 1.57E+06 ± 298.7% [10] 2.52E+12 ± 173.0% [8]
c-init 6.48E+07 1.19E+04 ± 8.6% [10] 8.75E+03 ± 2.9% [10]

s
p
h
-
a odom 3.79E+10 5.07E+06 ± 163.5% [10] 1.67E+09 ± 79.0% [10] χ2 = 2.37E+05

ATEpos = 1.380 [m]
ATErot = 0.109 [rad]

χ2 = 1.58E+05
ATEpos = 1.357 [m]
ATErot = 0.062 [rad]

span 1.43E+10 2.18E+06 ± 267.0% [10] 3.35E+06 ± 186.0% [10]
c-init 4.64E+07 2.37E+05 ± 2.3% [10] 1.58E+05 ± 2.1% [10]

t
o
r
-
a odom 1.74E+11 1.07E+09 ± 20.0% [10] - [0] χ2 = 3.99E+04

ATEpos = 1.143 [m]
ATErot = 0.037 [rad]

χ2 = 3.96E+04
ATEpos = 1.143 [m]
ATErot = 0.034 [rad]

span 5.20E+10 3.96E+07 ± 61.0% [10] - [0]
c-init 1.95E+09 3.99E+04 ± 1.5% [10] 3.96E+04 ± 1.6% [9]

TABLE II: Analysis of the χ2 on multiple datasets. The noise added is of type 3B. Experiments are performed over a population of 10 noise trials. Column 3
reports the mean χ2 of the initial guess. Column 4 and 5 contain mean and standard deviation of the final χ2 obtained after 100 iterations of GN optimization.
Between squared brackets we indicate the number of trials that converged to a local or global optimum. Finally, the last 2 columns contain mean values of i)
the χ2 , ii) the translational and iii) rotational Absolute Tracjectory RMSE computed after 100 GN iterations starting from the ground-truth.

the increments, one can mix quaternion-based and Euler-
based parametrization to describe error and increments. In
the supplementary material, we report further analysis on the
χ2 aimed to analyze how changing from one parametrization
to the other affects the convergence. In particular, we used
our error function in conjunction with quaternion and Euler
based increments; as for the standard error function, we
used both the quaternion and the Euler based representation
for the error vector, combined with quaternion and Euler
based increments. These tests confirm the trend highlighted
in Sec. V-B and Sec. V-C.

E. Impact of Information Matrix Projection

In Sec. IV-A we explained that the error space using the
chordal error function has dimension 12 and, thus, we have to
project onto it the original information matrix Ωij . A possible
way to achieve this goal in relatively easy way is using
the Unscented Transform. We sample sigma points from the
measurement distribution N (zij ,Σij) - where zij = t2v(Zij)
and Ωij = Σ−1ij - and project them onto the new higher
dimensional space. In this way, we can compute the mean and
covariance of the new distribution N (z̄ij , Σ̄ij). The converted
information matrix is simply the inverse of Σ̄ij .

Nonetheless, since we are projecting 6D sigma points onto
a 12D space, the resulting covariance may lose rank multiple
times. As a result the hyper-ellipsoid described by Σ̄ij may
have many degenerated eigenvalues - as many as the difference
between the space dimension and the current rank of Σ̄ij .
Intuitively, if Σ̄ij is already oddly shaped - as in our case -
the number of degenerated eigenvalues of the projection rises.

To properly invert Σ̄ij and perform the optimization process
correctly, we sum a value ε > 0 to the eigenvalues of Σ̄ij

that are below a threshold, retrieving the information matrix
as Ω̄ij = (UŜV>)−1, where Ŝ is the matrix containing the
conditioned eigenvalues. When Σ̄ij is subjected to multiple

rank losses, conditioning it with ε > 10−6 conducts to a
different problem formulation, more relaxed. Therefore the
optimal solution - as the final residual error - is different
from the original problem. In Fig. 4 we reported the residual
error of the optimal configuration varying the value of ε. We
used the sphere-b dataset, with noise figures 3A and 3B,
representing respectively isotropic and anisotropic information
matrix cases. In this experiment, the initial guess is the ground
truth. As a result, uneven shapes of Ωij require smaller values
of ε to achieve the equivalence of the problem. In cases where
Ωij has a more spherical appearance, larger value of ε are
preferred to ensure the convergence to the global minimum
and to guarantee that the optimal solution is equivalent to
the original. Still, visual inspection of solutions that report a
different χ2 compared to the original problem, does not reveal
any notable difference.

VI. CONCLUSION

In this work, we analyzed the effects of a different error
function to be used in 3D PGO. The proposed function is
based on the concept matrix difference between isometries and
compared to the gold standard approach for PGO - i.e. that
computes the error in the unit-quaternion space - reports
several benefits. The greater smoothness of the function allows
being better approximated through its first-order Taylor expan-
sion, leading to an enlarged convergence basin. Furthermore,
its derivatives are rather simple to compute in close form
and have good numerical properties. Theoretically, this also
allows reducing the number of FLOPS required to build the
linear system. We performed several experiments to support
our claims, varying both the noise figure super-imposed on the
edges and the initialization technique. We inspected also the
effects of anisotropic measurements covariance matrices on the
optimization process, reporting a better trend when using our
approach. Finally, we analyzed whether the converted chordal
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Fig. 4: Comparison of the chordal reprojected χ2 for different values of ε
- best in color. The initial guess is the ground truth, while the dataset is
sphere-b in all runs. This experiment considers only on 1 noise sample.

problem is equivalent to the original one. As a result, the two
approaches reach basically the same global minimum under
realistic noise figures.
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